
There are no Aspects

Davy Suvée1 , Wim Vanderperren2 , Dennis Wagelaar and

Viviane Jonckers

System and Software Engineering Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels,
Belgium

{dsuvee, wvdperre, dwagelaa, vejoncke}@vub.ac.be, http://ssel.vub.ac.be

Abstract

In this paper, we claim that a specialized aspect module is not required. Instead, we propose an
expressive aspect-oriented composition mechanism which can be applied upon existing modules.
At the design level, the CoCompose modeling framework is introduced which is based on Model
Driven Development. CoCompose allows step-wise refinement from a high-level design to the lowest
level design or code level. Using these refinements, CoCompose postpones the decision concerning
the modularization construct that is chosen for a particular concern. At the lowest level design
however, a specialized aspect modularization construct still needs to be chosen because current
aspect-oriented technologies typically introduce an aspect module. For resolving this issue, the
FuseJ programming language is proposed that allows implementing all possible concerns as regular
components. FuseJ introduces an expressive component composition mechanism that supports both
regular and aspect-oriented compositions between components. As such, a seamless transition from
design to implementation is achieved because no specialized aspect modules exist both at the design
and implementation level.

Keywords: Component-Based Software Development, Aspect-Oriented Software Development,
Composition Mechanisms, Model-Driven Development.

1 The author is supported by a doctoral scholarship from the Flemish Institute for the
Improvement of the Scientifical-Technological Research in the Industry (IWT or in Flemish:
“Vlaams instituut voor de bevordering van het wetenschappelijk-technologisch onderzoek
in de industrie”)
2 The author is supported by a doctoral scholarship from the Fund for Scientific Research
(FWO or in Flemish: “Fonds voor Wetenschappelijk Onderzoek”)

Electronic Notes in Theoretical Computer Science 114 (2005) 153–174

1571-0661/$ – see front matter © 2005 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.12.012

http://www.elsevier.com/locate/entcs


1 Introduction

Aspect-Oriented Software Development (AOSD) is a new development paradigm
that aims at achieving a better separation of concerns than possible using stan-
dard object-oriented (OO) software engineering methodologies [15]. AOSD
claims that some concerns of an application cannot be cleanly modularized
with standard OO technologies as they are scattered over or tangled with the
different modules of the system. Such a concern is called crosscutting be-
cause the concern virtually crosscuts the decomposition of the system. As a
result, similar logic is repeated in different modules, with code duplication as
a consequence. Due to this code duplication, it becomes very hard to add,
edit or remove a crosscutting concern from the system. Typical examples of
crosscutting concerns are debugging concerns such as logging [15] and con-
tract verification [30], security concerns [31] such as confidentiality and access
control and business rules [6] that describe business-specific logic.

Component-Based Software Engineering (CBSE) is another software engi-
neering paradigm that aims at increasing reusability of individual components
and component compositions. CBSE advocates very low coupling between
components and high cohesion of single components. Furthermore, compo-
nents are black-box 3 entities, which are independently deployable [29] . In
fact, when CBSE is employed, a component should never explicitly rely onto
other specific components in order to increase reusability. As a consequence,
CBSE suffers greatly from crosscutting concerns and tangled code because a
lot of concerns are spread over and repeated among different components in
order to keep the coupling as low as possible. As a result, aspect-oriented
ideas are very welcome in the component-based world.

Currently, a wealth of technologies are available that integrate aspect-
oriented ideas into component-based software engineering. Examples are JAC
[21], JBoss/AOP [13], EAOP [9], OIF [11] and JAsCo [28]. All of these ap-
proaches focus at introducing new programming languages or frameworks in
order to modularize crosscutting concerns. Support for aspect-oriented ideas
during the early cycles of component-based software engineering is still not yet
fully explored. Even though several production-quality aspect-oriented tech-
nologies exist, it seems to be very difficult to recuperate aspect-oriented ideas
in for example the design process. Currently, when designing a software appli-
cation with aspects in mind, the crucial question is: “when to model concerns
as an aspect?”. Indeed, one has to decide which concerns of the application

3 There is currently no unanimous vision on CBSE. For example, several different ap-
proaches exist that motivate why black-box, grey-box or white-box component composition
is the better choice. In this paper, we assume the Szyperski vision [29] on CBSE with
black-box component composition.

D. Suvée et al. / Electronic Notes in Theoretical Computer Science 114 (2005) 153–174154



Download English Version:

https://daneshyari.com/en/article/9656070

Download Persian Version:

https://daneshyari.com/article/9656070

Daneshyari.com

https://daneshyari.com/en/article/9656070
https://daneshyari.com/article/9656070
https://daneshyari.com

