
Deductive Runtime Certification

Konstantine Arkoudas1 Martin Rinard2

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, USA

Abstract

This paper introduces a notion of certified computation whereby an algorithm not only produces
a result r for a given input x, but also proves that r is a correct result for x. This can greatly
enhance the credibility of the result: if we trust the axioms and inference rules that are used in
the proof, then we can be assured that r is correct. Typically, the reasoning used in a certified
computation is much simpler than the computation itself. We present and analyze two examples
of certifying algorithms.
We have developed denotational proof languages (DPLs) as a uniform platform for certified compu-
tation. DPLs integrate computation and deduction seamlessly, offer strong soundness guarantees,
and provide versatile mechanisms for constructing proofs and proof-search methods. We have used
DPLs to implement numerous well-known algorithms as certifiers, ranging from sorting algorithms
to compiler optimizations, the Hindley-Milner W algorithm, Prolog engines, and more.

Keywords: Verification, certifying algorithms, program correctness, proofs, certificates, Athena,
DPLs

1 Introduction

Complete deductive verification of software systems can be extremely onerous.
It is a major challenge to prove mechanically that a complex piece of software
will always produce the correct output for any given input. The difficulty is
due partly to the fact that deductive technology has not yet reached a suffi-
ciently advanced state of the art, and partly to the inherently high complexity
of software. Nevertheless, formal proofs are a superb methodology for increas-
ing reliability, and we would like to find a use for them even when it is not
practical to prove a system completely correct.

1 Email: arkoudas@lcs.mit.edu
2 Email: rinard@lcs.mit.edu

Electronic Notes in Theoretical Computer Science 113 (2005) 45–63

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.035

mailto:arkoudas@lcs.mit.edu
mailto:rinard@lcs.mit.edu
http://www.elsevier.com/locate/entcs


This paper presents an alternative to complete static verification, namely
partial dynamic certification. Instead of statically proving that an algorithm
produces correct results for all inputs, we express the algorithm as a proof-
search procedure that takes an input x and not only produces a result r but
also proves that r is a correct result for x. Such certifying algorithms can be
viewed as instrumented versions of conventional algorithms, modified to justify
their results with deductive reasoning. The reasoning is performed at runtime,
and applies only to the particular input x and result r. The completed proof
can be regarded as a certificate for the result r; once this proof is validated,
we may say that r has been “certified.”

Runtime certification is less powerful than static verification. It guaran-
tees no more and no less than this: if and when the algorithm produces a
result, that result is correct—modulo the logic that specifies what counts as
correct. That can still be very useful, since it prevents the program from
silently generating a plausible but incorrect result.

The advantage of runtime certification is that usually it is much more prac-
tical than static verification. Consider, for instance, the unification example
we give in Section 4. A complete verification of a unification algorithm was
given by Paulson [28], where he states that the proof “relies on a substantial
theory of substitutions, consisting of twenty-three propositions and corollar-
ies... The project has grown too large to describe in a single paper... The proof
is not entirely beautiful. A surprisingly diverse series of problems appeared.”
A more recent correctness proof for a Martelli-Montanari-style unification al-
gorithm using the Boyer-Moore theorem prover runs to thousands of lines [31].
By contrast, expressed as a certifying algorithm, our Martelli-Montanari unifi-
cation procedure was implemented in less than one page of Athena code. 3 This
dramatic difference is an apt illustration of the main tradeoff: static verifica-
tion gives us peace of mind for all inputs, but is difficult; runtime certification
gives us more limited assurance, pertaining only to particular inputs and out-
puts, but is much more feasible. Another important difference is that static
proofs—such as the aforementioned by Paulson—usually verify an abstract
model of the software component, not the actual code; whereas in certified
computation the theorem refers to the actual result obtained in real time.

We envision runtime certification as a methodology to be applied to se-
lected parts of a software system, not to every part. In some cases it might
not be viable to characterize output correctness with mathematical rigor. For
other components, such as reactive systems, the important issue is not out-
put correctness but behavioral safety, and in that case other methods and
formalisms such as runtime monitoring [8] or I/O automata [18] will be ap-

3 Athena is the DPL we have used for all our implementations; we describe it in Section 3.

K. Arkoudas, M. Rinard / Electronic Notes in Theoretical Computer Science 113 (2005) 45–6346



Download English Version:

https://daneshyari.com/en/article/9656074

Download Persian Version:

https://daneshyari.com/article/9656074

Daneshyari.com

https://daneshyari.com/en/article/9656074
https://daneshyari.com/article/9656074
https://daneshyari.com

