
Enforcing Concurrent Temporal Behaviors

Doron Peled and Hongyang Qu

Department of Computer Science
The University of Warwick
Coventry, CV4 7AL, UK

Abstract

The outcome of verifying software is often a ‘counterexample’, i.e., a listing of the actions and
states of a behavior not satisfying the specification. In order to understand the reason for the
failure it is often required to test such an execution against the actual code. In this way we
also find out whether we have a genuine error or a “false negative”. Due to nondeterminism
in concurrent code, recovering an erroneous behavior on the actual program is not guaranteed
even if no abstraction was made and we start the execution with the prescribed initial state.
Testers are faced with a similar problem when they have to show that a suspicious scenario can
actually be executed. Such a scenario may involve some intricate scheduling and thus be illusive
to demonstrate. We describe here a program transformation that translates a program in such a
way that it can be verified and then reverse transformed for testing a suspicious behavior. Since
the transformation implies changes to the original code, we strive to minimize its effect on the
original program.

Keywords: Behavior monitoring, Concurrency, Counterexample analysis, Model Checking,
Nondeterminism, Temporal Logic, Testing.

1 Introduction

Verification is used to pinpoint the existence of errors in software. The out-
come of the verification process is often given by listing the sequence of
atomic actions and global states comprising a behavior not satisfying the
specification, called a counterexample. Since it is often not the code itself
that is being verified, but rather a model of it, there is a non negligible like-
lihood of encountering a ‘false negative’. That is, an execution that does
not conform with a behavior of the actual program. Since false negatives oc-
cur frequently, an execution suspicious of being faulty needs to be carefully
checked. Unfortunately, executions of concurrent programs may be quite
long and complicated when manually analyzed. Testers face a similar prob-
lem when they are required to show that some suspicious behavior actually
occurs during some run of the code. Given a behavior that appears under

Electronic Notes in Theoretical Computer Science 113 (2005) 65–83

1571-0661/$ – see front matter © 2004 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.034

http://www.elsevier.com/locate/entcs


some uncommon scheduling, it may be very hard for a tester to enforce the
tested program to execute it.

We are interested here in causing the checked code to behave according
to a given suspicious execution, which may be the result of a verification or
testing effort. We want to be able to reconstruct and inspect this behavior
in the context of the tested or verified code. Due to nondeterminism asso-
ciated with concurrently executing events, we are not guaranteed to recover
the given execution without enforcing some modification to the checked soft-
ware. We therefore concentrate on minimizing the effect of the changes to the
original code. We suggest a simple and automatic transformation that can be
applied to the code in order to recover the suspicious behavior. Our method
gives the verification engineer or tester a tool for checking and demonstrating
the existence of the error in the code. We impose the following constraints
on the suggested software transformation:

• Minimize the changes to the software. We want to deviate as little as
possible from the original program.

• Enforce the required execution exactly when choosing an appropriate initial
state. Other executions are still available when this initial state is not
selected.

• Any concurrency or independence between executed actions is preserved.
We are reconstructing a concurrent execution, rather than a completely
synchronized one in which one action is executed at a time. Hence our
solution is distributed rather than centralized.

• Preserve the checked property. Not all the execution sequences with the
same concurrent structure as the original counterexample necessarily sat-
isfy the same temporal properties.

• Apply the construction to a finite representation of infinite execution, i.e.,
an ultimately periodic sequence.

Although our transformation will be demonstrated for a given (Pascal-
like) syntax, it is language-independent. We discuss some language and im-
plementation issues in Section 7.

Our architecture is shown in Figure 1. In order to perform the verification,
the program is translated into a finite set of atomic actions. This translation
may also include an abstraction that simplifies the verified model. Another
component of the translation is a dependency relation, which includes pairs
of actions that cannot be executed concurrently, e.g., due to the use of a
shared variable or a message queue. Finally, a third component of the trans-
lation is an annotated code, which has pointers to various locations in the
text, specifically the beginning and the end of the text of the code related to
atomically executed actions. These pointers are useful in adding new instruc-
tions (or changing the existing ones) in a way that will enforce executing the
suspicious behavior.

D. Peled, H. Qu / Electronic Notes in Theoretical Computer Science 113 (2005) 65–8366



Download English Version:

https://daneshyari.com/en/article/9656075

Download Persian Version:

https://daneshyari.com/article/9656075

Daneshyari.com

https://daneshyari.com/en/article/9656075
https://daneshyari.com/article/9656075
https://daneshyari.com

