
Simulation of Simultaneous Events in Regular

Expressions for Run-Time Verification

Usa Sammapun Arvind Easwaran Insup Lee Oleg Sokolsky1 ,2

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA, USA

Abstract

When specifying system requirements, we want a language that can express the requirements in
the simplest and most intuitive form. Although the MaC system provides an expressive language,
called MEDL, it is generally awkward to express certain features like temporal ordering of com-
plex events, timing constraints, and frequencies of events which are inherent in safety properties.
MEDL-RE extends the MEDL language to include regular expressions to easily specify timing
dependencies and timing constraints. Due to simultaneous events generated by the MaC system,
monitoring regular expressions by simulating DFAs would result in a potential problem. The DFA
simulations would involve concurrent multi-path simulations and result in exponential running
time. To handle simultaneous events inexpensively, we generate a dependency graph to identify
possible simultaneous events. Further, we augment the original DFAs with alternative transitions,
which will substitute for multi-path simulations.

Keywords: Runtime verification, DFA simulation, DFA, MEDL.

1 Introduction

The monitoring, checking and steering (MaC) framework [9,10,11] has been
designed to ensure that the execution of a real-time system is consistent with
its requirements at run-time. It provides a language, called MEDL, to spec-
ify safety properties based on LTL [13]. The safety properties include both

1 This research was supported in part by NSF CCR-9988409, NSF CCR-0086147, NSF
CCR-0209024, and ARO DAAD19-01-1-0473.
2 Email: {usa,arvinde,lee,sokolsky}@saul.cis.upenn.edu

Electronic Notes in Theoretical Computer Science 113 (2005) 123–143

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.030

mailto:usa@saul.cis.upenn.edu
mailto:arvinde@saul.cis.upenn.edu
mailto:lee@saul.cis.upenn.edu
mailto:sokolsky@saul.cis.upenn.edu
http://www.elsevier.com/locate/entcs


computational and timing requirements. The safety properties are defined
in terms of events, conditions, auxiliary variables, and auxiliary functions.
Events are instantaneous incidents such as variable updates or the start/end
of a method call. Conditions are propositions about the program that may
be true or false for a duration of time. Those events and conditions can also
be composed using connectives described in Section 2. Auxiliary variables
are temporary storage, which allows us, for example, to count the number of
occurrences of an event. Auxiliary functions return values and time stamps of
events. The MEDL language provides an elegant and intuitive way to specify
computational requirements. It, however, does not provide an intuitive way
to specify timing requirements, such as temporal ordering of events with com-
plex timing dependencies, timing constraints or counting of specific events in
a time interval.

The extension of MEDL called MEDL-RE [14] adds the ability to specify
ordering of events in the form of regular expressions (RE) over a customized
set of events, which offers users with clearer and less error-prone specifica-
tions. In this paper, we propose an efficient simulation of the corresponding
DFAs at runtime. By observing a sequence of events occuring in a target
system, a DFA generated by MEDL-RE matches the sequence of events with
a specific regular expression. However, because the composite events can be
triggered simultaneously and cannot be temporally ordered in any way, the
DFA must recognize these events for any ordering of the events. This means
if a regular expression has some inherent ordering of simultaneous events, the
DFA must accept all different permutations of such order. We refer to those
permutations as linearizations. To build such a DFA, we augment the original
DFA with alternative transitions to provide paths from one linearization to
another. We then prove that the original DFA and the augmented DFA are
equivalent. Only those DFAs whose underlying regular expressions have candi-
date simultaneous events in their relevant sets are augmented. The candidate
simultaneous events can be statically detected by building and traversing a
dependency graph described in Section 4.

The paper is organized as follows. Section 2 briefly explains an overview of
the MaC framework. Section 3 introduces an extension MEDL-RE. Section 4
discusses the construction of the dependency graph. Section 5 presents and
proves our augmented DFA algorithm. Section 6 presents related work. Lastly,
section 7 concludes the paper.

U. Sammapun et al. / Electronic Notes in Theoretical Computer Science 113 (2005) 123–143124



Download English Version:

https://daneshyari.com/en/article/9656078

Download Persian Version:

https://daneshyari.com/article/9656078

Daneshyari.com

https://daneshyari.com/en/article/9656078
https://daneshyari.com/article/9656078
https://daneshyari.com

