
Guaranteeing Correctness Properties of a

Java Card Applet

Lars-Åke Fredlund

Box 1263, 164 29 Kista,
Swedish Institute of Computer Science, Sweden

e-mail: fred@sics.se

Abstract

The paper describes an experiment in which a framework for model checking Java byte code,
combined with the application of runtime monitoring techniques through code rewriting, was used
to guarantee correctness properties of a Java Card applet.

Keywords: Java byte code, runtime monitoring, code rewriting, Java Card.

1 Introduction

The Java Card platform [8] is a platform for building multi-application smart
cards. It is based on a subset of Java which omits features such as concur-
rency through threads, garbage collection, and many API functions. How-
ever, to support multiple applications co-existing on the same card (e.g.,
both a purse applet and a loyalty applet), there is a notion of an applet.
Java Card applets are implemented by extending the Java Card API class
javacard.framework.Applet. Briefly an implementation is required to pro-
vide a method install which is called upon installation of an applet, meth-
ods select and deselect for selection/deselection of a particular applet on
a card, and the “main” method process which is called by the card runtime
environment (operating system) upon receiving an event from the card envi-
ronment intended for that applet. An applet can also implement a method
getShareableInterfaceObject for permitting other applets on the same card
to call it.

Electronic Notes in Theoretical Computer Science 113 (2005) 217–233

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.01.033

http://www.elsevier.com/locate/entcs


Unfortunately the Java Card programming platform provides weak sup-
port for separating applets. For instance nothing in the standards prevents
a malicious or badly written applet from allocating all persistent memory on
a card (the little there is), and since the standard does not require garbage
collection this is a very undesirable state-of-affairs. Similar concerns exists
for inter-applet calls, although they are controlled by a rather weak firewall
mechanism. Thus there are significant dangers with permitting new applets
onto a functioning smart card, and as a result one of the chief innovations
of Java Card, i.e., multiple applications co-existing on the same card, is in
practise not used much at all.

To improve upon this situation the formal design techniques group of SICS
have been using fully automatic and low-cost (in terms of execution speed and
memory usage) verification methods that could, potentially, be used by an on
(or off) card runtime system to determine at load time whether a new applet
should be permitted onto a card with pre-existing applets or not. In a first
experiment, reported in [3], we analysed inter-method calls of multi-applet
Java Card smart cards using model checking of Java byte code. In this paper
we extend the treatment to memory allocation concerns. In case the safety
of an applet cannot be proved using model checking, we as a complementary
technique instrument a compiled applet with a runtime monitor to guarantee
that it adheres to a safe memory allocation policy.

To provide a semantics foundation for the analysis of Java Card applets we
use the abstract notion of a program graph, capturing the control flow of pro-
grams with procedures/methods, and which can be efficiently computed. The
behaviour of such program graphs is defined through the notion of pushdown
systems, which provide a natural execution model for programs with methods
(and possibly recursion), and for which completely automatic model checkers
for LTL exist, e.g., Moped [7]. The details of the translation are elaborated
in section 3.1, and sections 3.2, 3.3 and 3.4 describes the logic and our use of
the Moped model checking tool in further detail.

The example considered in the paper is a real applet submitted by Schlum-
berger. The applet is monolithic, and does not communicate with other ap-
plets. In section 4 we formalise and attempt to verify the property that no
memory is allocated by an applet (after a personalization process) using model
checking. As the satisfaction of this property is shown to depend critically on
properties of data, which requires reasoning using less coarse abstractions than
the ones implemented in the call graph extraction tool, we consider in sec-
tion 5 the complementary use of runtime monitoring techniques to guarantee
the property.

L.-Å. Fredlund / Electronic Notes in Theoretical Computer Science 113 (2005) 217–233218



Download	English	Version:

https://daneshyari.com/en/article/9656083

Download	Persian	Version:

https://daneshyari.com/article/9656083

Daneshyari.com

https://daneshyari.com/en/article/9656083
https://daneshyari.com/article/9656083
https://daneshyari.com/

