
Architectural Unit Testing

Giuseppe Scollo and Silvia Zecchini1 ,2

Department of Computer Science
University of Verona

Verona, Italy

Abstract

A formal testing methodology is outlined in this paper, that proves applicable to validation of
architectural units in object-oriented models, and its use is illustrated in the context of the design of
a robot teleoperation architecture. Automated generation of test cases to validate the functionality
of the robot trajectory generation unit showcases the key features of this methodology. A disciplined
use of UML state diagrams, to model the unit’s dynamics consistently with its static properties
as modeled by class diagrams, enables one to provide such models with Input/Output Labelled
Transition Systems (IOLTS) semantics, whence a rich machinery of testing theories and tools based
on those theories become readily available. Our case study tells that, besides black-box testing
of final implementation units, white-box analysis of architectural units may greatly benefit from
the flexibility of parameterized I/O-conformance relations. Test purposes turn out to be a useful
methodological link between functional requirements, which they are drawn from, and conformance
relations, which they help one to instantiate, thereby delimiting test selection to purposeful tests.
Contingent aspects of our methodology include: a mechanical translation of state diagrams in
Basic LOTOS, a non-mechanical, use-case driven synthesis of test purposes, expressed in the same
language, and the use of the TGV tool for automated test case generation. Other choices in these
respects are well possible, without affecting the characteristic traits of the proposed methodology,
that are rather to be found in: 1) the combination of object-oriented architectural modeling with
IOLTS semantics; 2) the aim at maximizing the potential for test generation from UML models, in
a broad view of testing which applies throughout the development process; 3) the specific proposal
to consider internal actions as testable actions, in view of a better coordination between testing
(discovery of faults) and debugging (discovery of internal sources of faults).

Keywords: formal testing methods, white-box testing, test purpose, test selection, automated
test case generation.

1 Email: giuseppe.scollo@univr.it
2 Email: silvia.zecchini@univr.it

Electronic Notes in Theoretical Computer Science 111 (2005) 27–52

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.12.006

mailto:giuseppe.scollo@univr.it
mailto:silvia.zecchini@univr.it
http://www.elsevier.com/locate/entcs


1 Introduction

The analysis, design and construction of a complex system can be made con-
ceptually more tractable if one describes the software architecture by a formal
specification [21]. A specification of such type enables engineers and designers
to check which components’ functionalities, described in the system require-
ments, are satisfied and to verify the intended interactions of those compo-
nents. The formal specification of a software architecture provides a solid
foundation for developing architecture-based testing techniques [22].

The testing of architectural abstractions allows one to detect defects in
the initial phases of the software lifecycle, rather than after implementation
or during system integration, as is common practice, and thus to prevent their
propagation through the subsequent phases.

In very complex software systems, the amount of information in the sys-
tem implementation is, typically, more than a single person could understand.
A common way to deal with these systems is by using a model of the sys-
tem. The availability of a model derives, obviously, from the application to
realize. Clearly, in a model we must include all the relevant information for
our purpose, but we must pay attention to exclude the information that is
not necessary. Indeed, a model with too much information may be difficult to
comprehend. The name “model-based testing” is a general term used to refer
to an approach that bases testing activities, such as test case generation and
evaluation, on models of the application under test [6,1,4].

Object-oriented models have found in the Unified Modeling Language
(UML) [20] a standard notation, supported by a wide variety of model de-
velopment tools. This enables one to model design concerns, requirements as
well as decisions, at different abstraction levels, or perspectives [3], ranging
from the conceptual modeling perspective through a more prescriptive spec-
ification perspective, down to concrete implementation perspective. Clearly,
all of these prove useful, albeit in different phases of the software develop-
ment process, but we argue that there’s even room in between. Of particular
interest to this paper is an architectural perspective, which is more prescrip-
tive than conceptual modeling in that it fixes design decisions of architectural
relevance such as naming of components (packages, classes) and connectors
(associations, operations, inheritance relations), as well as ordering of inter-
actions between objects, yet not so complete in its prescriptive character as a
specification perspective would be.

In the next section we characterize with some more precision the level of
formal detail which is adopted in the architectural perspective taken in the
subject case study. For the time being we just point out that several types of

G. Scollo, S. Zecchini / Electronic Notes in Theoretical Computer Science 111 (2005) 27–5228



Download English Version:

https://daneshyari.com/en/article/9656098

Download Persian Version:

https://daneshyari.com/article/9656098

Daneshyari.com

https://daneshyari.com/en/article/9656098
https://daneshyari.com/article/9656098
https://daneshyari.com

