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Abstract

We present a measure of jointness to explore dependence among regressors, in the context of
Bayesian model selection. The jointness measure proposed here equals the posterior odds ratio
between those models that include a set of variables and the models that only include proper subsets.
We illustrate its application in cross-country growth regressions using two datasets from the model-
averaging growth literature.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Performing inference on the determinants of GDP growth is challenging because, in
addition to the complexity and heterogeneity of the objects of study, a key characteristic
of the empirics of growth lies in its open-endedness (Brock and Durlauf, 2001). Open-end-
edness entails that, at a conceptual level, alternative theories may suggest additional deter-
minants of growth without necessarily excluding determinants proposed by other theories.
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The absence, at the theoretical level, of such tradeoff leads to substantial model uncer-
tainty, at the empirical level, about which variables should be included in a growth regres-
sion. In practice, a substantial number of growth determinants may be included as
explanatory variables. If two such variables are capturing different sources of relevant
information and should both be included, we will talk of jointness (as defined later),
whereas if they perform very similar roles they should not appear jointly, which we will
denote by disjointness. We could think of these situations as characterized by the covari-
ates being complements or substitutes, respectively.

Various approaches to deal with this model uncertainty have appeared in the literature:
early contributions are the extreme-bounds analysis in Levine and Renelt (1992) and the
confidence-based analysis in Sala-i-Martin (1997). Fernandez et al. (2001b, FLS hence-
forth) use Bayesian model averaging (BMA, see Hoeting et al., 1999) to handle the model
uncertainty that is inherent in growth regressions, as discussed above. BMA naturally
deals with model uncertainty by averaging posterior inference on quantities of interest
over models, with the posterior model probabilities as weights. Other papers using
BMA in this context are Ledn-Gonzdlez and Montolio (2004) and Papageorgiou and
Masanjala (2005). Alternative ways of dealing with model uncertainty are proposed in
Sala-i-Martin et al. (2004, SDM henceforth),> and Tsangarides (2005). Insightful discus-
sions of model uncertainty in growth regressions can be found in Brock and Durlauf
(2001) and Brock et al. (2003). All of these studies adopt a Normal linear regression model
and consider modeling n growth observations in y using an intercept and explanatory vari-
ables from a set of k variables in Z, allowing for any subset of the variables in Z to appear
in the model. This results in 2* possible models, which will thus be characterized by the
selection of regressors. We call model M; the model with the 0 < k; < k regressors grouped
in Z;, leading to

Yo, B, 6 ~ N(o, + Z; j,azl), (1)

where 1, is a vector of n ones, f§; € MY groups the relevant regression coefficients and
g € R, is a scale parameter.

Based on theoretical considerations and simulation results in Fernandez et al. (2001a),
FLS adopt the following prior distribution for the parameters in M;:

ples By olM;) o< o 13/ (B0, 0 (2,2)) ™), (2)

where fy(w|m, V) denotes the density function of a ¢-dimensional Normal distribution on
w with mean m and covariance matrix ¥ and they choose g = 1/max{n,k*}. Finally, the
components of f# not appearing in M; are exactly zero, represented by a prior point mass
at zero.

The prior model probabilities are specified by P(M;) = 05(1 — Q)k_k" , which implies that
each regressor enters a model independently of the others with prior probability 0. Thus,
the prior expected model size is Ok. We follow Fernandez et al. (2001a) and FLS in choos-
ing 0 = 0.5, which is a benchmark choice—implying that P(M;) = 27" and that expected
model size is k/2. Throughout this paper, we shall use the same prior as in FLS. An explicit
analysis of alternative priors in this context is carried out in Ley and Steel (2007).

2 SDM’s procedure BACE in fact uses approximate Bayesian posterior probabilities of regression models based
on the Schwarz criterion, as proposed by Raftery (1995).
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