
Information and Computation 197 (2005) 90–121

www.elsevier.com/locate/ic

Minimal-change integrity maintenance using tuple deletions �

Jan Chomicki a,∗, Jerzy Marcinkowski b

a Department of Computer Science and Engineering, 201 Bell Hall, University at Buffalo, Buffalo, NY 14260-2000, USA
b Institute of Informatics, Wroclaw University, Przesmyckiego 20, 51-151 Wroclaw, Poland

Received 6 December 2002; revised 6 April 2004

Abstract

We address the problem of minimal-change integrity maintenance in the context of integrity constraints
in relational databases. We assume that integrity-restoration actions are limited to tuple deletions. We focus
on two basic computational issues: repair checking (is a database instance a repair of a given database?) and
consistent query answers [in: ACM Symposium on Principles of Database Systems (PODS), 1999, 68] (is a tuple
an answer to a given query in every repair of a given database?). We study the computational complexity of
both problems, delineating the boundary between the tractable and the intractable cases. We consider denial
constraints, general functional and inclusion dependencies, as well as key and foreign key constraints. Our
results shed light on the computational feasibility of minimal-change integrity maintenance. The tractable
cases should lead to practical implementations. The intractability results highlight the inherent limitations of
any integrity enforcement mechanism, e.g., triggers or referential constraint actions, as a way of performing
minimal-change integrity maintenance.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Inconsistency is a common phenomenon in the database world today. Even though integrity con-
straints successfully capture data semantics, the actual data in the database often fail to satisfy such

� Research supported by NSF Grant IIS-0119186 and UB faculty start-up funds.
∗ Corresponding author.
E-mail addresses: chomicki@cse.buffalo.edu (J. Chomicki), Jerzy.Marcinkowski@ii.uni.wroc.pl (J. Marcinkowski).

0890-5401/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2004.04.007



J. Chomicki, J. Marcinkowski / Information and Computation 197 (2005) 90–121 91

constraints. This may happen because the data is drawn from a variety of independent sources (as
in data integration [47]) or are involved in complex, long-running activities like workflows.

How to deal with inconsistent data? The traditional way is not to allow the database to become
inconsistent by aborting updates or transactions leading to integrity violations. We argue that in
present-day applications this scenario is becoming increasingly impractical. First, if a violation oc-
curs because of data from multiple, independent sources being merged [48], there is no single update
responsible for the violation. Moreover, the updates have typically already committed. For example,
if we know that a person should have a single address but multiple data sources contain different
addresses for the same person, it is not clear how to fix this violation through aborting some update.
Second, the data may have become inconsistent through the execution of some complex activity
and it is no longer possible to trace the cause of the inconsistency to a specific action.

In the context of triggers or referential integrity, more sophisticated methods for handling
integrity violations have been developed. For example, instead of being aborted an update may be
propagated. In general, the result is at best a consistent database state, typically with no guarantees
on its distance from the original, inconsistent state (the research reported in [49] is an exception).

In our opinion, integrity-restoration should be a separate process that is executed after an in-
consistency is detected. The restoration should have a minimal impact on the database by trying to
preserve as many tuples as possible. This scenario is called from now on minimal-change integrity
maintenance.

One can interpret thepostulate ofminimal change in several differentways, dependingonwhether
the information in the database is assumed to be correct and complete. If the information is complete
but not necessarily correct (it may violate integrity constraints), the only way to fix the database is by
deleting someparts of it. If the information is both incorrect and incomplete, thenboth insertions and
deletions should be considered. In this paper, we focus on the first case. Since we are working in the
context of the relational data model, we consider tuple deletions. Such a scenario is common in data
warehouse applications where dirty data coming from many sources is cleaned in order to be used as
a part of the warehouse itself. On the other hand, in some data integration approaches, e.g. [46,47],
the completeness assumption is notmade. For large classes of constraints, e.g., denial constraints, the
restriction to deletions has no impact, since only deletions can remove integrity violations. Another
dimension of change minimality is whether updates to selected attributes of tuples are considered
as ways to remove integrity violations. We return to the issue of minimal change in Sections 2 and 5.

We claim that a central notion in the context of integrity restoration is that of a repair [3]. A repair
is a database instance that satisfies the integrity constraints and minimally differs from the original
database (which may be inconsistent). Because we consider only deletions of complete tuples as ways
to restore database consistency, the repairs in our framework are maximal consistent subsets of the
original database instance.

The basic computational problem in this context is repair checking, namely checking whether
a given database instance is a repair of the original database. The complexity of this problem is
studied in the present paper. Typically, repair checking algorithms can be easily adapted to non-
deterministically compute repairs (as we show).

Sometimes when the data is retrieved online from multiple, autonomous sources, it is not possible
to restore the consistency by constructing a single repair. In that case one has to settle for computing,
in response to queries, consistent query answers [3], namely answers that are true in every repair of the
given database. Such answers constitute a conservative “lower bound” on the information present in



Download English Version:

https://daneshyari.com/en/article/9656893

Download Persian Version:

https://daneshyari.com/article/9656893

Daneshyari.com

https://daneshyari.com/en/article/9656893
https://daneshyari.com/article/9656893
https://daneshyari.com

