
Science of Computer Programming 58 (2005) 344–365

www.elsevier.com/locate/scico

Exclusion requirements and potential concurrency
for composite objects

Abdelsalam Shanneba,∗, John Pottera, James Nobleb

aProgramming Languages and Compilers Group, School ofComputer Science and Engineering,
University of New South Wales, Sydney, Australia

bSchool of Mathematical and Computing Sciences, Victoria University of Wellington, Wellington, New Zealand

Received 1 November 2004; received in revised form 15 January 2005; accepted 1 March 2005
Available online 13 June 2005

Abstract

Concurrent object-oriented systems must prevent the interference that may arise when multiple
threads simultaneously access shared components. We present a simple approach for implementing
flexible locking strategies in an object-oriented system, in which the components themselves may
be composite objects. We expressexclusion requirementsas sets of conflict pairs on component
interfaces. Given knowledge of the dependency between the interface of a composite object and its
internal components, we show how external exclusion requirements can be calculated from internal
requirements, and further, how any potential concurrent activity outside an object can be projected
into potential concurrencyfor the internal components.

With our approach we can defer the distribution of locks in the system until deployment: the
placement of locks and choice of lock type for a component can depend on its operating environment.
A Galois connection between the outward mapping of exclusion requirements, and the inward
mapping of potential concurrency, limits how many locks are worth considering. In this paper we
only deal with exclusion control, including mutexes, read–write locks and read–write sets, and do
not cover state-dependent locking or transaction-based approaches.
© 2005 Elsevier B.V. All rights reserved.

∗ Corresponding author.
E-mail addresses:shanneba@cse.unsw.edu.au (A. Shanneb),potter@cse.unsw.edu.au (J. Potter),

kjx@mcs.vuw.ac.nz (J. Noble).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.03.004

http://www.elsevier.com/locate/scico


A. Shanneb et al. / Science of Computer Programming 58 (2005) 344–365 345

Keywords: Concurrency control; Concurrent objects; Composite objects; Component-based systems; Locking
granularity

1. Introduction

Whether by education, experience, or accident, most programmers habitually treat
programs as sequential. When presented with a series of statements in almost any
programming language, we are drawn to imagining the effect of executing these statements
one step after another. Our assumptions about the correctness of code depend critically on
this sequentiality. Unfortunately, our intuition does not model the execution of concurrent
programs. In a multi-threaded environment, concurrent threads sharing resources can
interfere with each other’s execution.

To guaranteethread-safetyfor our systems, we need to prevent interference between
concurrent threads potentially operating on the same data. In order to provide thread-safety
for software components, the simplest approach is to force mutually exclusive access to
the components’ interface. For example, in Java, we can declare all the methods of a class
as synchronised, serialising concurrent calls to each instance of that class so that each
object acts as a monitor. COM’s apartment model similarly allows entire components to be
singly threaded. Single-threading entire high-level components or subsystems necessarily
limits concurrent execution, thereby restricting system responsiveness and efficiency in
multiprocessor environments.

To increase the potential concurrency in a system while maintaining thread-safety,
we can adopt two complementary approaches. First, we can move monitor boundaries
from high-level components down to subcomponents, so that rather than single-threading
an entire subsystem, only the shared objects within that subsystem are single-threaded.
Second, we can adopt a finer granularity of exclusion control, such as read–write locks,
rather than simply single-threading entire components. We can of course adopt both of
these approaches simultaneously, and provide finer grain locking internally rather than at
the external interface.

This article contributes a novel approach for reasoning about concurrency and exclusion
in component-based object-oriented systems. We provide a simple notation for recording
the exclusion requirements of each component in a system. Programmers can associate
fine-grained exclusion policies with any object in the composition. Then, using dependency
relations between composite and subsidiary components, we show how to propagate
internal exclusion requirements outward, and the potential for concurrency inward, thereby
checking that all components exclusion requirements have been met, ensuring that the
system as a whole will be thread-safe. Ournotation only addressesexclusion control; this
includes mutexes, read–write locks and read–write sets, but doesnot cover state-dependent
locking or transaction-based approaches.

This work extends our earlier work on thealgebra of exclusion[26,28], by introducing
an explicit notion ofpotential concurrencythat is complementary to exclusion. The earlier
approach was unable to calculate the exclusion that a composite component provided
for its subcomponents: rather, it relied on programmers guessing the exclusion first, and



Download	English	Version:

https://daneshyari.com/en/article/9657397

Download	Persian	Version:

https://daneshyari.com/article/9657397

Daneshyari.com

https://daneshyari.com/en/article/9657397
https://daneshyari.com/article/9657397
https://daneshyari.com/

