
Science of Computer Programming 58 (2005) 141–178

www.elsevier.com/locate/scico

Static insertion of safe and effective memory reuse
commands into ML-like programs✩

Oukseh Leea,∗, Hongseok Yangb, Kwangkeun Yib

aDepartment of Computer Science & Engineering, Hanyang University, Ansan Gyeonggi 426-791,
Republic of Korea

bSchool of Computer Science & Engineering, Seoul National University, Sillim-9-dong Gwanak-gu,
Seoul 151-742, Republic of Korea

Received 23 October 2003; received in revised form 31 August 2004; accepted 17 February 2005
Available online 24 May 2005

Abstract

We present a static analysis that estimates reusable memory cells and a source-level
transformation that adds explicit memory reuse commands into the program text. For benchmark
ML programs, our analysis and transformation system achieves a memory reuse ratio from 5.2% to
91.3% and reduces the memory peak from 0.0% to 71.9%. The small-ratio cases are for programs
that have anumber of data structures that are shared. For other cases, our experimental results are
encouraging in terms of accuracy and cost. Major features of our analysis and transformation are: (1)
polyvariant analysis of functions by parameterization for the argument heap cells; (2) use of multiset
formulas in expressing the sharings and partitionings of heap cells; (3) deallocations conditioned
by dynamic flags that are passed as extra arguments to functions; (4) individual heap cells as the
granularity of explicit memory reuse. Our analysis and transformation system is fully automatic.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Program analysis; Program transformation; Type system; Compile-time garbage collection

✩ Lee and Yi were supported by the Brain Korea 21 (2003–2004)of Korean Ministry of Education and Human
Resource Development; Lee was supported by the research fund of Hanyang University (HY-2004-G); Yang was
supported by R08-2003-000-10370-0 from the Basic Research Program of the Korea Science and Engineering
Foundation; and Yi was supported by KoreaResearch Foundation KRF-2003-041-D00528.∗ Corresponding author.

E-mail addresses:oukseh@hanyang.ac.kr (O. Lee), hyang@ropas.snu.ac.kr (H. Yang),
kwang@cse.snu.ac.kr (K. Yi).

0167-6423/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2005.02.007

http://www.elsevier.com/locate/scico


142 O. Lee et al. / Science of Computer Programming 58 (2005) 141–178

1. Overview

Our goal is to automatically insert explicit memory reuse commands into ML-like
programs so that they do not blindly request memory when constructing data. We
present a static analysis and a source-level transformation system that automatically adds
explicit memory reuse commands into the program text. The explicit memory reuse is
accomplished by inserting explicit memory-free commands right before data-construction
expressions. Because the unit for deallocation and allocation is an individual cell, such
deallocation and allocation sequences can beimplemented as memory reuses.1

Example 1. Function call “insert i l” returns a new list where integeri is inserted into
its position in the sorted listl.

fun insert i l =
case l of [] => i::[] (1)

| h::t => if i<h then i::l (2)
else h::(insert i t) (3)

Let us assume that the argument listl is not used after a call toinsert. If we program
in C, we can destructively add one node fori into l so that theinsert procedure should
consume only one cons-cell. Meanwhile, the ML program’s line(3) will allocate as many
new cons-cells as that of the recursive calls. Knowing that listl is not used any longer, we
can reuse the cons-cells froml:

fun insert i l =
case l of [] => i::[]

| h::t => if i<h then i::l
else let z = insert i t

in (free l; h::z) (4)

In line (4), “free l” will deallocate the single cons-cell pointed to byl. The very next
expression’s data construction “::” will reuse the freed cons-cell. �

1.1. Related works

The type systems [25,24,2] based on linear logic fail to achieve theExample 1case
because variablel is used twice.Kobayashi [10], and Aspinall and Hofmann [1] overcome
this shortcoming by using more fine-grained usage aspects, but their systems still reject
Example 1because variablesl andt are aliased at line(2)–(3). They cannot properly
handle aliasing: for “let x=y in e” where y points to a list, this list cannot in general
be reused ate in their systems. Moreover, Aspinall and Hofmann did not consider an
automatic transformation for reuse. Kobayashi provides an automatic transformation, but
he requires the memory system to manage a reference counter for every heap cell.

Deductive systems like separation logic [9,16,17] and the alias-type system [18,26] are
powerful enough to reason about shared mutable data structures, but they cannot be used

1 The drawback of this approach might be that the memory reuse “bandwidth” is limited by the data-
construction expressions in the program text. But our experimental results show that such a drawback is imaginary.



Download English Version:

https://daneshyari.com/en/article/9657408

Download Persian Version:

https://daneshyari.com/article/9657408

Daneshyari.com

https://daneshyari.com/en/article/9657408
https://daneshyari.com/article/9657408
https://daneshyari.com

