
Science of Computer Programming 56 (2005) 1–4

www.elsevier.com/locate/scico

Preface

New software composition concepts✩

Component-based software engineering has not fulfilled the earlier promise of plug-
and-play system production. The reasons may be found in the production details which are
much more sophisticated than this high-level glance buoyed up with false hopes. However,
although not being able to reach such an easy plug-and-play utopia, new work led to
promising results.

An important step is taken by the EU funded project EASYCOMP (IST-1999-
14191) which has promoted the development of new software composition concepts. The
consortium has addressed the composition problems on the detailed technical and process
level well-rounded with industrial case studies.

The goal of EASYCOMP was to provide composition technology to support the end-
user on all levels easing the task of constructing systems from components. The results
range from methodology and composition techniques to composition infrastructure and
case studies (http://www.easycomp.org). Some of these results are presentedin separate
paper contributions within this special issue.

Besides the project work to promote composition concepts, the EASYCOMP
consortium has launched this special issue aiming at publishing the most promising
approaches not only of the EASYCOMP consortium itself but of international rank. From
46submissions 13 high-quality papers have been accepted for this special issue.

With respect to the accepted contributions the production of component systems and the
composition issues may be classified into the following problem domains:

• Component Development Processes
System development means organization of time and resources. Developing component
systems has specific requirements.
Kantorowitz and Lyakas present a framework which supports a use case-driven (based
on natural language) development.

✩ This special issue is partially supported by the European Community under the IST programme—Future
and Emerging Technologies, contract IST-1999-14191-EASYCOMP. The authors are solely responsible for the
content of this communication. It does not represent the opinion of the European Community, and the European
Community is not responsible for any use that might be made of data appearing therein.

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.001

http://www.elsevier.com/locate/scico
http://www.easycomp.org


2 Preface / Science of Computer Programming 56 (2005) 1–4

One issue with component system development is the heterogeneity of the involved
components. Arató, Mann and Orbán address this issue by combining hardware and
software components in the development process.

• Component Development Techniques, Component-specific Languages
Each paradigm has usually specific languages which support its specific abstractions.
As for object-oriented programming this is also a requirement for component-oriented
programming.
Component-specific language support is the content of the work of Fröhlich, Gal and
Franz and their language Lagoona which supports component-specific concepts like
distributed extensibility.
Lumpe and Schneider express a variety of inheritance mechanisms by a uniform
language-neutral concept / model to bridge between different component models.
Assmann emphasizes the importance of architectural styles for specific component
types, the active document components. General and reoccurring concepts like
invasiveness, transconsistency, staged architecture are identified.

• “Componentization” and Component Modeling / Specification
A question is how we build the individual components which are targeted to be
combined to a component system. Approaches may be divided into those which derive
components from existing (legacy and non-component) software and those which build
the components from scratch. The latter are close to component-specific languages.
Washizaki and Fukazawa follow the former by extracting components from existing
object-oriented software. Components areidentified based on reusability metrics;
components and environment are refactored to preserve the original semantics.
Scheben introduces a component specification and modeling approach. Based on a
type system for (hierarchical) components aformal definition of exchangeability and
interoperability is provided.

• Component Mining
Reuse requires first the detection of suitable existing components. Mining deals with
this problem of identification and selection based on suitability criteria.
Gross, Melideo and Sillitti developed the CLARiFi component-broker platform with
certification mechanism to support the collection, management, location, evaluation and
selection of components.

• Component Adaptation
Having selected a component for its reuse in the targeted component system the system
developer will have to adapt the component before or while its composition in most
cases.
Liu, Wang and Kerridge developed the scenario-based dynamic component adaptation
and generation (SAGA) approach to overcome the mismatch between component and
reuse context and to reduce the adaptation overhead.

• Composition Verification, Interference Detection and Testing
As in all software development errors come together with functionality. For that
reason, component-specific verification, interference detection and testing approaches
are necessary.
Dias da Silva and Perkusich use component-based Petri nets to visualize the structure
and model the behavior of software architectures and components. Model checking in



Download English Version:

https://daneshyari.com/en/article/9657443

Download Persian Version:

https://daneshyari.com/article/9657443

Daneshyari.com

https://daneshyari.com/en/article/9657443
https://daneshyari.com/article/9657443
https://daneshyari.com

