
Science of Computer Programming 56 (2005) 41–57

www.elsevier.com/locate/scico

Supporting software composition at the
programming language level

Peter H. Fröhlicha,∗, Andreas Galb, Michael Franzb

aDepartment of Computer Science and Engineering, University of California, Riverside, CA, United States
bSchool of Information and Computer Science, University of California, Irvine, CA, United States

Received 31 October 2003; received in revised form 22 August 2004; accepted 6 September 2004
Available online 9 December 2004

Abstract

We are in the midst of a paradigm shift toward component-oriented software development, and
significant progress has been made in understanding and harnessing this new paradigm. Oddly
enough, however, the new paradigm does not currently extend to the level at which components
themselves are constructed. While we have composition architectures and languages that describe
how systems are put together out of atomic program parts, the parts themselves are still constructed
on the basis of a previous paradigm: object-oriented programming. We argue that this mismatch
impedes the progress of compositional software design: many of the assumptions that underlie
object-oriented languages simply do not apply in the open and dynamic contexts of component
software environments. What, then, would a programming language that supported component-
oriented programming at the smallest granularity look like? Lagoona, our project to develop such
a language, tries to answer this question. This paper motivates the key concepts behind Lagoona
and briefly describes their realization (using Lagoona itself as the implementation language) in the
context of Microsoft’s .NET environment.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Component-oriented software development; Programming languages; Distributed extensibility;
Language paradigms beyond object-oriented programming

∗ Corresponding author. Tel.: +1 951 827 2604; fax: +1 951 827 4643.
E-mail address:phf@acm.org (P.H. Fröhlich).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.004

http://www.elsevier.com/locate/scico


42 P.H. Fröhlich et al. / Science of Computer Programming 56 (2005) 41–57

1. Introduction

While the idea of “software components” was proposed as far back as the 1960s [23], the
arrival of the Internet has propelled us into an age where component-oriented programming
(COP) is becoming simultaneously viable and necessary: viable, because an efficient com-
ponent discovery and distribution mechanism is nowavailable; necessary, because the com-
plexity of Internet-enabled applications often exceeds the abstraction capabilities of exist-
ing programming paradigms. There is, of course, much confusion about what COPactually
means [36,20]. This state of affairs is similar to the confusion surrounding object-oriented
programming (OOP) in the 1980s. As with OOP, the “essence” of COP is not primarily
found in technical details of programming language design and implementation (although
we focus on itsimplicationsfor these areas in the following). Instead, and again similar to
the OOP case, the importance of the paradigm lies in its conceptual vision, i.e. the software
architectures that it strives for, the software qualities that it emphasizes, and the software
development processes that it mandates. The latter is also the most striking difference be-
tween COP and established paradigms, which are usually silent on issues of process.

We contend that the “essence” of COP is the notion ofdistributed extensibility, in
contrast to the notion ofcentralized reusewhich has been the focus of software components
since they were first proposed. Centralized reuse means that software components are
acquired by an application vendor who in turn sells a monolithic application to users. The
application vendor alone hascompletecontrol over the integration process, deciding which
components are delivered as part of the final application. Once deployed, the application
cannot be “reintegrated” with newer or different components, keeping the application
vendor in control. Also, without “privileged”access to the internals of the application,
no party except the application vendor can develop extensions. In contrast, distributed
extensibility (seeFig. 1) means thatany interested party can develop extensions, which
can be acquired and integrated byanyoneat any time [12]. Monolithic “applications”
disappear under distributed extensibility, to be replaced bycomponentsand frameworks
(seeFig. 2). Components provide functional extensions for (domain-specific) frameworks,
while frameworks provide (customized) execution environments for components.

The fundamental difference in process between centralized reuse and distributed
extensibility also has profound implicationsfor programming languages. It is current
practice to approximatecertain COP ideas using a variety of essentially OOP languages

Fig. 1. Distributed extensibility enables anyone to independently develop, acquire, and integrate anything,
anytime.



Download English Version:

https://daneshyari.com/en/article/9657446

Download Persian Version:

https://daneshyari.com/article/9657446

Daneshyari.com

https://daneshyari.com/en/article/9657446
https://daneshyari.com/article/9657446
https://daneshyari.com

