
Science of Computer Programming 56 (2005) 99–116

www.elsevier.com/locate/scico

A technique for automatic component extraction
from object-oriented programs by refactoring

Hironori Washizakia,∗, Yoshiaki Fukazawab

aResearch Center for Testbeds and Prototyping, National Instituite of Informatics, 2-1-2 Hitotsubashi,
Chiyoda-ku, Tokyo, 101-8430, Japan

bDepartment of Computer Science, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Received 29 October 2003; received in revised form 22 September 2004; accepted 22 September 2004
Available online 21 December 2004

Abstract

Component-based software development (CBD) is based on building software systems from
previously-existing software components. In CBD, reuse of common parts in component form can
reduce the development cost of new systems, and reduce the maintenance cost associated with
the support of these systems. However, existing programs have usually been built using another
paradigm, such as the object-oriented (OO) paradigm. OO programs cannot be reused rapidly or
effectively in the CBD paradigm even if they contain reusable functions. In this paper, we propose
a technique for extracting components from existing OO programs by our new refactoring “Extract
Component”. Our technique of refactoring can identify and extract reusable components composed
of classes from OO programs, and modify the surrounding parts of extracted components in original
programs. We have developed a system that performs our refactoring automatically and extracts
JavaBeans components from Java programs. As a result of evaluation experiments, it is found that our
system is useful for extracting reusable components along with usage examples from Java programs.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Component-based development (CBD); Refactoring;Object-oriented programming; Software reuse;
Software component; JavaBeans

∗ Corresponding author.
E-mail addresses:washizaki@acm.org (H. Washizaki), fukazawa@waseda.jp (Y. Fukazawa).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.007

http://www.elsevier.com/locate/scico


100 H. Washizaki, Y. Fukazawa / Science of Computer Programming 56 (2005) 99–116

1. Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development [35]. In CBD, software development is
considered to involve the composition of various software components. CBD is capable of
reducing developmental costs and improving the reliability of an entire system.

In this paper, we use object-oriented (OO) programming language for the
implementation of components. CBD does not always have to be object-oriented; however,
it has been indicated that using OO paradigm/language is a natural way to model and
implement components [13]. In fact, some of the practical component architectures, such
as JavaBeans [12] and EnterpriseJavaBeans (EJB) [5], are based on OO technologies.

In CBD, the reuse of common parts in component form can reduce the development
cost of new systems, and reduce the maintenance cost associated with the support of
these systems. However, not all components corresponding to functional requirements are
already available in all possible contexts. In contrast, there are many program repositories
available on the Internet such as SourceForge.net [34]. At these on-line repositories,
programmers can obtain a large amount of OO program source codes and binary codes.
There is a possibility that programs, which partially fulfill the required functionalities, exist
among these available OO program source codes. If such parts of existing OO programs
could be easily reused as components, programmers could develop software by means of
CBD by utilizing these programs.

However, since OO classes usually have complex mutual dependencies, it is difficult
to reuse parts of existing OO programs composed of classes rapidly and effectively. If a
significant function is realized by a set of classes, programmers who want to reuse the
function must examine the dependencies among related classes and acquire all depending
classes. Since such manual examination activities entail a high cost for programmers, the
merits of reuse might be reduced or lost. Therefore, it is necessary to transform a part of an
existing OO program into a component that has no dependence on elements outside itself.
However, current CBD methodologies mostly lack a systematic decomposition algorithm
[33].

Moreover, even if the components can be extracted from existing programs, it is difficult
to identify the appropriate use of the extracted components only by referring to the source
codes or public interfaces of the components. Therefore, it is preferable to acquire a usage
example along with the extracted components.

In this paper, we propose a technique for identifying structurally reusable candidate
parts of OO programs according to our definition of the reusable component based on
JavaBeans [12], and transforming these parts into reusable components automatically by
our new refactoring, “Extract Component”. Our technique targets Java language as the
OO programming language and JavaBeans as the fundamental component architecture.
Our technique accepts any kind of Java programs as the extraction target whether these
programs use specific coding standards or structural templates. Moreover, we show that our
extraction technique is useful for acquiring usage examples for the extracted components.

In the following, we first define a class relation graph (CRG) that represents the
relations among classes/interfaces in the target Java program. Next, using a CRG, we
propose a technique for extracting components from OO programs, and changing the



Download English Version:

https://daneshyari.com/en/article/9657449

Download Persian Version:

https://daneshyari.com/article/9657449

Daneshyari.com

https://daneshyari.com/en/article/9657449
https://daneshyari.com/article/9657449
https://daneshyari.com

