
Science of Computer Programming 56 (2005) 117–139

www.elsevier.com/locate/scico

Hierarchical composition of industrial components

Ursula Scheben

FernUniversität Hagen, Lehrstuhl für Programmiersysteme, D-58097 Hagen, Germany

Received 20 November 2003; received in revised form 16 August 2004; accepted 6 September 2004
Available online 22 December 2004

Abstract

In this paper we focus on the hierarchical composition of instances of arbitrary industrial com-
ponent models yielding new (compound) components with specifiedcapabilities and requirements
which can themselves be composed to yield higher level components. For this purpose special com-
ponent interfaces and component implementations are defined which ensure a smooth integration
of industrial components. The component implementations of compound components enable a late
binding by referring to enclosed component instances only by their component interfaces. But also
explicit bindings between component interfaces and component implementations can be defined. A
type system for components is introduced enabling a formal definition of exchangeability and inter-
operability ofcomponents. Using this type system, tools are able to decide which components may
be exchanged by others and which components fit together. They can also support the creation of
new components from existing ones by checking a new assembly for consistency.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Component; Component model; COTS; Hierarchical composition; Component specification;
Component reengineering; Typing of components; Services; Plugs; Constraints

1. Introduction

In this paper we deal with componentmodels which support the possibility to
define components in a hierarchical manner. This means that a component may in
principle be described as a set of subcomponents, their interconnections, and a set of

E-mail address:ursula.scheben@fernuni-hagen.de.

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.008

http://www.elsevier.com/locate/scico


118 U. Scheben / Science of Computer Programming 56 (2005) 117–139

exported subcomponent services which canbe accessed by clients of the component.
Every subcomponent may itself be atomic or composed from other components. We
call component models supporting such conceptshierarchical. Hierarchical component
models reduce the complexity of building applications from components because an
application can be built step by step. Starting from atomic components, new components
of higher degree of granularity can be built in every step, ending up in a complete
application.

Most of the current industrial component models like JavaBeans [5], Enterprise
JavaBeans (EJB) [7], the Corba Component Model (CCM) [15], and also WebSer-
vices [19], only provide a flat component model. CCM provides a means to describe a
set of interconnected component instances and their mapping to hosts and processes by
an assembly descriptor. But this kind of description does not support the building of new
components with a dedicated interface to the outer world. For EJBs it is possible to de-
fine a set of cooperating EJBs building a part of an application. This is done in a special
section of thedeployment descriptor. It can especially be defined which implementations
to use for EJBs referred to by other EJBs of the set. But as in the case of CCM this is
no means to define new components with a dedicated interface to the outer world. In con-
trast to the above-mentioned flat industrial component models, COM [8] offers ameans
to hierarchically compose components by aggregation. Aggregation means that a compo-
nent may provide references to interfaces of aninternal (sub)component to its clients. The
clients of the aggregating “outer” componentO do not know about the internal aggrega-
tion. They may query a reference to an interface of the aggregated component by a call to
the IUnknown interface ofO as if these interfaces were directly implemented byO. Unfor-
tunately there are several drawbacks in this approach: one of them is that components must
be aware whether they should be used as aggregates in the future. Possible aggregates have
to provide special additional features. Components missing these features cannot be used
as aggregates later on. Another drawback is that the means for hierarchical composition
provided by COM are only targeted to experienced programmers. They have to use ex-
isting programming languages to compose components, which do not support component
composition concepts in a first class manner.

For flat component models composition languages like, for example, the Bean Markup
Language (BML) [18], CoML [2] or Beanome [6] were developed, targeted to provide
a simple way to aggregate and wire together existing component instances to build new
components or applications. In such languages components are treated as first class entities.
Most of these languages however are targeted to a special industrial component model
and are limited in the kind of exported entities. In the BML-language, for example, only
methods and events can be exported, not whole interfaces. Also in most cases there
exists no possibility to express whether the built components still require services of
other components to fulfil their tasks. The component instances declared in a composite
are already bound to a special implementation, so that it is difficult to exchange the
implementation of one of its constituents later on.

In this context we introduce a hierarchical component model with the following
characteristics: component instances communicate to the outer world only through
their component interfaces. Component instances may be connected by corresponding
entities of their component interfaces to enable an inter-component communication.



Download English Version:

https://daneshyari.com/en/article/9657450

Download Persian Version:

https://daneshyari.com/article/9657450

Daneshyari.com

https://daneshyari.com/en/article/9657450
https://daneshyari.com/article/9657450
https://daneshyari.com

