
Science of Computer Programming 56 (2005) 231–249

www.elsevier.com/locate/scico

Sequences as a basis for pattern language
composition

Ronald Portera,∗, James O. Coplienb, Tiffany Winna

aSchool of Informatics and Engineering, Flinders University of South Australia, PO Box 2100, Adelaide,
South Australia 5001, Australia

bVrije Universiteit Brussel, c/o North Central College, 30 N. Brainard Street, Naperville, IL 60540, USA

Received 12 November 2003; received in revised form 10 August 2004; accepted 6 September 2004
Available online 13 December 2004

Abstract

Pattern languages have begun to appear and mature as a presentation of the structures and
processes that support the building of complex software systems. A pattern language describes how
to compose structures in a particular domain such as telecommunications, client–server architecture,
or object-oriented programming, to achieve system-level architectures that are greater than the
sum of their parts. A problem lurks on the horizon: How do you compose patterns from multiple
domains—from multiple pattern languages—in a single system?For example, today there is nothing
other than an ad hoc approach to combining the pattern languages for telecommunications and
for object-oriented design to build object-oriented telecommunications systems from the respective
pattern languages. To understand the solution to this dilemma, it pays to examine sequences: an
important aspect of pattern application that is often overlooked. Sequences are the loci of concern
about interleaving patterns, whether from a single pattern language or multiple pattern languages.
Sequences are critical because pattern languages represent long-term archives of the rhythms of
critical, recurring sequences.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Sequence; HOPP; Idioms; AOP; Aspects; Telecommunications

∗ Corresponding author.
E-mail address: ron.porter@infoeng.flinders.edu.au (R. Porter).

0167-6423/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2004.11.014

http://www.elsevier.com/locate/scico


232 R. Porter et al. / Science of Computer Programming 56 (2005) 231–249

1. Introduction

Modularity appears to be dead. The focus of contemporary design discourse is typified
by such non-modular notions as aspects, patterns, and features. Aspects are a grouping
of code related to some software feature whose implementation cuts across the original
system partitioning. Patterns are structural relationships between parts of a system on
many scales; they combine architectural relationship, structure, and process in ways that go
beyond modular approaches. Features are collections of marketable functionality which,
though they would be attractive as self-contained physical packages, almost always cut
across any reasonable physical partitioning of the architecture.

Aspects andpatterns are both examples of design aids that cut across existing,
recognized modules. And yet, the irony is that these examples are themselves modular in
some sense. Alexander’s early work viewed patterns as encapsulations of forces [2, p. i], as
design modules that allowed one to reason about a limited set of forces in relative isolation.
Both patterns and aspects identify key elements of complex system composition at the
conceptual level. Aspects, patterns, and features are thus themselves subject to questions
of composition. For example, how might one compose multiple aspects on top of a single
system? How doesone compose features? This problem is as yet largely unsolved.

An ordered composition of patterns leads to a system. The structural relationships
between patterns are encoded in larger design structures called pattern languages. The
term “language” appeals to the notion of a generative grammar that can create any system
in a given genre. Much of the software community’s original interest in patterns came
from their ability to deal with issues that, from an object-oriented perspective, reflected
cross-cutting.

Yet, even patterns are not immune from the cross-cutting problem. Most interesting
systems are notof a single, pure genre. For example, a telecommunications system may use
communication design pattern languages such as those given by Hanmer [1] and Meszaros
[21] for fault tolerance and system capacity, respectively. The structural ordering is well
defined within each of these pattern languages. Yet what does one do if one wants to build
a fault-tolerant system that deals with capacity issues? How does one mix patterns from
multiple pattern languages? The problem can become arbitrarily rich: consider adding
yet a third pattern language such as Coplien’s language for structuring C++ inheritance
hierarchies [11], presuming that the system is to be written in C++ using an object-
oriented programming style.

The fundamental problem of combining patterns of different genres is not one of spatial
dependency, but of the temporal ordering of pattern application. Thismeans that combining
pattern languages is more temporal than structural. While expert telecommunications
designers have long known instinctively how to combine such pattern languages for a given
system and context, articulating thatknowledge for less expert designers is a very difficult
problem. For the inexpert designer, who may be using particular pattern languages for the
firsttime, the languages offer no help as to how to address the problem of temporal ordering
of pattern application. Addressing that problem is the focus of this paper.

The structure of the paper is as follows.Section 2defines pattern languages.Section 3
further motivates the need for composition.Section 4talks about sequences, andSection 5
discusses pattern languages as encodings of recurring rhythms of sequences.Section 6



Download English Version:

https://daneshyari.com/en/article/9657456

Download Persian Version:

https://daneshyari.com/article/9657456

Daneshyari.com

https://daneshyari.com/en/article/9657456
https://daneshyari.com/article/9657456
https://daneshyari.com

