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Abstract

We give a complexity theoretic classification of the counting versions of so-called H-colouring problems for graphs H that may
have multiple edges between the same pair of vertices. More generally, we study the problem of computing a weighted sum of
homomorphisms to a weighted graph H.

The problem has two interesting alternative formulations: first, it is equivalent to computing the partition function of a spin system
as studied in statistical physics. And second, it is equivalent to counting the solutions to a constraint satisfaction problem whose
constraint language consists of two equivalence relations.

In a nutshell, our result says that the problem is in polynomial time if the adjacency matrix of H has row rank 1, and #P-hard
otherwise.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This paper has two different motivations: the first is concerned with constraint satisfaction problems, the second with
“spin-systems” as studied in statistical physics. A known link between the two are so-called H-colouring problems.
Our main result is a complete complexity theoretic classification of the problem of counting the number of solutions
of an H-colouring problem for an undirected graph H which may have multiple edges, and actually of a natural
generalisation of this problem to weighted graphs H. Translated to the world of constraint satisfaction problems, this
yields a classification of the problem of counting the solutions to constraint satisfaction problems for two equivalence
relations. Translated to the world of statistical physics, it gives a classification of the problem of computing the partition
function of a spin system.

Let us describe our result from each of the different perspectives: Let H be a graph, possibly with multiple edges
between the same pair of vertices, e.g. a multi-graph. An H-colouring of a graph G is a homomorphism from G to H. Both
the decision problem, asking whether a given graph has an H-colouring, and the problem of counting the H-colourings
of a given graph, have received considerable attention [5,6,9,11,12]. Here we are interested in the counting problem.
Dyer and Greenhill [5] gave a complete complexity theoretic classification of the counting problem for undirected
graphs H without multiple edges; they showed that the problem is in polynomial time if each connected component of
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H is complete bipartite without any loops or is complete with all loops present, and #P-hard otherwise. Here we are
interested in counting H-colourings for multi-graphs H. Note that, as opposed to the decision problem, multiple edges
do make a difference for the counting problem. Let H be a multi-graph with vertex set {1, . . . , k}. H is best described
in terms of its adjacency matrix A = (Aij ), where Aij is the number of edges between vertices i and j. Given a graph
G = (V , E), we want to compute the number of homomorphisms from G to H. Observe that this number is

ZA(G) = ∑
�:V →{1,...,k}

∏
e={u,v}∈E

A�(u)�(v). (1)

Borrowing from the physics terminology, we call ZA the partition function of A (or H). We denote the problem of
computing ZA(G) for a given graph G by EVAL(A). Of course if we define ZA as in (1), the problem is not only
meaningful for matrices A that are adjacency matrices of multi-graphs, but for arbitrary square matrices A. We may
view such matrices as adjacency matrices of weighted graphs (omitting edges of weight 0). We call a symmetric matrix
A connected (bipartite) if the corresponding graph is connected (bipartite, respectively).

We prove the following classification result:

Theorem 1. Let A be a symmetric matrix with non-negative real entries.
(1) If A is connected and not bipartite, then EVAL(A) is in polynomial time if the row rank of A is at most 1; otherwise

EVAL(A) is #P-hard.
(2) If A is connected and bipartite, then EVAL(A) is in polynomial time if the row rank of A is at most 2; otherwise

EVAL(A) is #P-hard.
(3) If A is not connected, then EVAL(A) is in polynomial time if each of its connected components satisfies the

corresponding condition stated in (1) or (2); otherwise EVAL(A) is #P-hard.

Note that this generalises Dyer and Greenhill’s [5] classification result for graphs without multiple edges, whose
adjacency matrices are symmetric 0-1 matrices.

Our proof builds on interpolation techniques similar to those used by Dyer and Greenhill, recent results on counting
the number of solutions to constraint satisfaction problems due to Dalmau and the first author [1], and a considerable
amount of polynomial arithmetic. Even though we present the proof in the language of constraint satisfaction problems
here, in finding the proof it has been very useful to jump back and forth between the H-colouring and constraint
satisfaction perspective.

Let us now explain the result for constraint satisfaction problems. A constraint language � on a finite domain
D is a set of relations on D. An instance of the problem CSP(�) is a triple (V , D, C) consisting of a set V of
variables, the domain D, and a set C of constraints 〈s, �〉, where � is a relation in � and s is a tuple of vari-
ables whose length matches the arity of �. A solution is a mapping � : V → D such that for each constraint
〈(v1, . . . , vr ), �〉 ∈ C we have (�(v1), . . . , �(vr )) ∈ �. There has been considerable interest in the complexity of
constraint satisfaction problems [16,14,7,2,3], which has mainly been driven by Feder and Vardi’s [7] dichotomy
question, asking whether for all languages � the problem CSP(�) is either solvable in polynomial time or NP-
complete. A similar dichotomy question can be asked for the problem #CSP(�) of counting the solutions for a
given instance [4,1].

We consider constraint languages � consisting of two equivalence relations �, �. Suppose that � has k equivalence
classes and � has � equivalence classes. Then � can be described by a (k × �)-matrix B = (Bij ), where Bij is the
number of elements in the intersection of the ith class of � and the jth class of �. We show that, provided that the matrix is
“indecomposable” (in a sense made precise in Section 2.2), the problem #CSP(�) is in polynomial time if the row rank
of B is 1 and #P-hard otherwise. There is also a straightforward extension to “decomposable” matrices (see Corollary 15
for the precise statement). In [1], it has been shown that if #CSP(�) is in polynomial time, then � has a so-called Mal’tsev
polymorphism. The result of this paper provides a further necessary condition for � to give rise to a counting problem
solvable in polynomial time.

We can generalise our result for CSP whose language consists of two equivalence relations to weighted CSP, where
each domain element d carries a non-negative real weight �(d). The weight of a solution � : V → D is defined to
be the product

∏
v∈V �(�(v)), and the goal is to compute the weighted sum over all solutions (see Theorem 14 for the

precise statement of our result). As an important intermediate step, we even prove our classification result for weights
that are polynomials with integer coefficients.
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