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Abstract

We formalize a potentially rich new streaming model, the semi-streaming model, that we believe is necessary for the fruitful study
of efficient algorithms for solving problems on massive graphs whose edge sets cannot be stored in memory. In this model, the input
graph, G = (V , E), is presented as a stream of edges (in adversarial order), and the storage space of an algorithm is bounded by
O(n · polylog n), where n= |V |. We are particularly interested in algorithms that use only one pass over the input, but, for problems
where this is provably insufficient, we also look at algorithms using constant or, in some cases, logarithmically many passes. In the
course of this general study, we give semi-streaming constant approximation algorithms for the unweighted and weighted matching
problems, along with a further algorithmic improvement for the bipartite case. We also exhibit log n/ log log n semi-streaming
approximations to the diameter and the problem of computing the distance between specified vertices in a weighted graph. These
are complemented by �(log(1−�) n) lower bounds.
© 2005 Published by Elsevier B.V.
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1. Introduction

Streaming [14,2,10] is an important model for computation on massive data sets. Recently, there has been a large
body of work on designing algorithms in this model [11,2,10,15,13,12]. Yet, the problems considered fall into a small
number of categories, such as computing statistics, norms, and histograms. Very few graph problems [4] have been
considered in the streaming model.
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The difficulty of graph problems in the streaming model arises from the memory limitation of the model combined
with input-access constraints. We can view the amount of memory used by algorithms with sequential (one-way) input
access as a spectrum. At one end of the spectrum, we have dynamic algorithms [9] that may use memory enough for the
whole input. At the other end, we have streaming algorithms that use only polylog space. At one extreme, there is a lot
of work on dynamic graph problems; on the other, general graph problems are considered hard in the (poly)log-space
streaming model. Recently, it has been suggested by Muthukrishnan [19] that the middle ground, where the algorithms
can use O(n · polylog n) bits of space, is an interesting and open area. This is the area that we explore.

Besides taking a middle position in the memory-size spectrum, the semi-streaming model allows multiple passes
over the input stream. In certain applications with massive data sets, a small number of sequential passes over the data
would be much more efficient than many random accesses to the data. Only a few works [8,6] have considered the
multiple-pass model and a lot remains to be done.

Massive graphs arise naturally in many real-world scenarios. Two examples are the call graph, where nodes corre-
spond to telephone numbers and edges to calls between numbers that call each other during some time interval, and
the web graph, where nodes are web pages, and the edges are links between pages. The streaming model is necessary
for the study of the efficient processing of such massive graphs. In [1], the authors introduce the semi-external model
for computations on massive graphs, i.e., one in which the vertex set can be stored in memory, but the edge set cannot.
However, this work addresses the problems in an external memory model in which random access to the edges, although
expensive, is allowed. This is a major difference between their model and ours. Indeed, the authors of [18] argue that
one of the major drawbacks of standard graph algorithms, when applied to massive graphs such as the web, is their need
to have random access to the edge set. Furthermore, there are situations in which the graph is revealed in a streaming
fashion, such as a web crawler exploring the web graph.

We consider a set of classical graph problems in this semi-streaming model. We show that, although the computing
power of this model is still limited, there are semi-streaming algorithms for a variety of graph problems. Our main
result is a semi-streaming algorithm that computes a ( 2

3 − �)-approximation in O((log(1/�))/�) passes for unweighted
bipartite graph matching. We also provide a one-pass semi-streaming algorithm for 1

6 -approximating the maximum
weighted graph matching. We also provide log n/ log log n approximations for diameter and shortest paths in weighted
graphs which we complement with �(log(1−�) n) lower bounds for these problems in unweighted graphs.

2. Preliminaries

Unless stated otherwise, we denote by G(V, E) a graph G with vertex set V = {v1, v2, . . . , vn} and edge set
E = {e1, e2, . . . , em}. Note that n is the number of vertices and m the number of edges.

Definition 1. A graph stream is a sequence of edges ei1 , ei2 , . . . , eim , where eij ∈ E and i1, i2, . . . , im is an arbitrary
permutation of [m] = {1, 2, . . . , m}.

While an algorithm goes through the stream, the graph is revealed one edge at a time. This definition generalizes
the streams of graphs in which the adjacency matrix or the adjacency list is presented as a stream. In a stream in the
adjacency-matrix or adjacency-list models, the edges incident to each vertex are grouped together. We need the more
general model to account for graphs such as call graphs where the edges might generated in any order.

The efficiency of a graph algorithm in the semi-streaming model is measured by the space it uses, the time it requires
to process each edge, and the number of passes it makes over the graph stream.

Definition 2. A semi-streaming graph algorithm computes over a graph stream using S(n, m) bits of space. The
algorithm may access the input stream in a sequential order(one-way) for P(n, m) passes and use T (n, m) time to
process each edge. It is required that S(n, m) be O(n · polylog (n)) bits.

To see the limitation of the (poly)log-space streaming model for graph problems, consider the following simple
problem. Given a graph, determining whether there is a length-2 path between two vertices, x and y, is equivalent to
deciding whether two vertex sets, the neighborhood of x and the neighborhood of y have a non-empty intersection.
Because set disjointness has linear-space communication complexity [16], the length-2 path problem is impossible in
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