
Theoretical Computer Science 343 (2005) 207–236
www.elsevier.com/locate/tcs

Games for complexity of second-order
call-by-name programs

Andrzej S. Murawski
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Abstract

We use game semantics to show that program equivalence and program approximation in a second-
order fragment of IdealizedAlgol are PSPACE-complete. The result relies on a PSPACE construction
of deterministic finite automata representing strategies defined by second-order programs and is an
improvement over the at least exponential space bounds implied by the work of other authors in which
extended regular expressions were used.
The approach makes it possible to study the contribution of various constructs of the language to

the complexity of program equivalence and demonstrates a similarity between call-by-name game
semantics and call-by-name interpreters.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Game semantics; Computational complexity; Program analysis

1. Introduction

Game semantics views computation as an exchange of moves between two players, who
represent respectively the program under evaluation and the environment in which the
program is evaluated. Programs can then be interpreted as strategies for the first player.
This approach has led to the construction of firstfully abstractmodels for a variety of
programming languages, i.e. models in which the interpretations of two programs coincide
if and only if the programs are equivalent [3,13,4,5,12,16,2,7]. The game models provide a
semantic characterization of program equivalence and make it possible to recast questions
about equivalence of programs as semantic problems. However, reasoning about programs

E-mail address:Andrzej.Murawski@comlab.ox.ac.uk.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.05.013

http://www.elsevier.com/locate/tcs
mailto:Andrzej.Murawski@comlab.ox.ac.uk

208 A.S. Murawski / Theoretical Computer Science 343 (2005) 207–236

with game models is not so easy, especially if one has automation in mind. Firstly, to
achieve full abstraction, equivalence classes of strategies need to be considered instead
of strategies, and in general the relation involved (the so-calledintrinsic preorder) is very
intricate. Secondly, positions arising in game semantics are not merely sequences of moves.
In addition, they are endowed with pointers that connect moves subject to a number of
combinatorial constraints.
The case of Idealized Algol in which expressions may have side effects is much more

satisfying. There, the above-mentioned quotient set admits a direct characterization based
oncompleteplays—plays that correspond to terminating computations. Consequently, the
first obstacle is removed: questionsabout programequivalence (respectively approximation)
can be restated as equivalence (respectively containment) queries for the induced sets of
complete positions. Moreover, when one restricts the language to second order, positions
can be treated as strings of moves, because the pointer structure is uniquely reconstructible
and hence redundant. Then it turns out that complete plays generated by second-order
programs form regular languages[10], which immediately implies decidability of second-
order program equivalence and approximation, because the problems of equivalence and
containment of regular languages are decidable.
Two expositions of the regular game semantics exist [1,10], both employing a class of

semi-extended regular expressions with intersections to describe the sets of complete plays
generated by programs. Because the equivalence and containment problems for such ex-
pressions are known to be EXPSPACE-complete, one might suspect that the corresponding
problems concerning programs will inherit this complexity (intersections are crucial for
modelling state). In this paper we show that this is not the case: program approximation as
well as program equivalence in the fragment of Idealized Algol considered in these papers
are in fact both PSPACE-complete.
Our approach consists of a direct construction of deterministic automata which represent

the game semantics of programs. In order to avoid the use of exponential space this process
has two stages: first we construct the automaton corresponding to programs in which state
changes are not observed; then we refine it so that state changes are respected. Because the
construction is conducted in polynomial space, and both equivalence and containment of
deterministic automata are NL-complete, one can obtain a PSPACE algorithm for program
approximation and equivalence by combining the two in a careful way.
To our knowledge this is the first time a complexity result like this has been proved using

a denotational model.

1.1. Idealized Algol

IdealizedAlgol (IA) is the canonical language combining functional and imperative pro-
gramming.Weshall concern ourselveswith its fragment, calledIA2, inwhich free identifiers
are of base type or (first-order) function type and arguments to procedures are of base type.
IA2 types (denoted byT) are generated by the following grammar:

B ::= com | exp | var T ::= B | B → T .
Those generated fromB are called base types.comis the type of commands,expis the type
of expressions. We assume that values of typeexpare taken from a finite initial segment

Download	English	Version:

https://daneshyari.com/en/article/9657782

Download	Persian	Version:

https://daneshyari.com/article/9657782

Daneshyari.com

https://daneshyari.com/en/article/9657782
https://daneshyari.com/article/9657782
https://daneshyari.com/

