
Theoretical Computer Science 338 (2005) 315–349
www.elsevier.com/locate/tcs

Functions with local state: Regularity and
undecidability

Andrzej S. Murawski
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK

Received 2 March 2004; accepted 9 December 2004

Communicated by D. Sannella

Abstract

We study programs of a finitary ML-like languageRMLf with ground-type references.RMLf
permits the use of functions with locally declared variables that remain private and persist from one
use of the function to the next. Using game semantics we show that this leads to undecidability of
program equivalence already at second order. We also examine the extent to which this feature can be
captured by regular languages. This gives a decidability result for a second-order fragmentRML−f of
RMLf , which comprises many examples studied in the literature.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Game semantics; Automata; Software verification; Model checking

1. Introduction

Game semantics has contributed fully abstract models for a variety of programming
languages. Each of these models gives a semantic account of program equivalence: the
interpretations of programs coincide if and only if the programs are equivalent in the re-
spective languages. This makes it possible, at least in principle, to reason about program
equivalence with the help of game models. However, their structure does not facilitate such
reasoning, since the game categories are obtained via non-trivial quotienting. Fortunately,
for languages with ground-type references, the quotient can be characterized explicitly via
sets of special plays, making the model more accessible and usable.

E-mail address:andrzej.murawski@comlab.ox.ac.uk.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.036

http://www.elsevier.com/locate/tcs
mailto:andrzej.murawski@comlab.ox.ac.uk


316 A.S. Murawski / Theoretical Computer Science 338 (2005) 315–349

Plays in game semantics are sequences of moves equipped with pointers. In some cases,
however, the pointer structure can be shown to be uniquely reconstructible and consequently
can be ignored. Then sets of plays can be regarded simply as languages over the alphabet of
moves and program equivalence can be analyzed as language equivalence. If the associated
language equivalence is decidable, so must be program equivalence. In order to obtain
decidability, finitary language fragments are considered: with finite datatypes and with
iteration instead of unrestricted recursion.

The first result establishing that pattern of reasoning has been obtained by Ghica and
McCusker[10,11] and concerned second-order Idealized Algol and regular expressions.
This discovery initiated research into algorithmic aspects of game semantics and its potential
to become a foundation for software model-checking [2]. The initial decidability result has
also been extended in various directions: to third-order IdealizedAlgol [22,21], concurrency
[12] and a call-by-value language with arrays [9]. The last of these papers, by Ghica,
investigated a language with first-order procedures and block-allocated variables, such as
those used in imperative programs.

In this paper we consider the call-by-value case as well but we shall focus on dynamically
allocated (integer-valued) variables used in languages such as Standard ML. Access to such
variables can be passed outside their original allocation block, which opens up new ways of
manipulating the program state. One can also define functions which have “private” local
variables that persist over invocations and accumulate information throughout their lifetime,
like in the simple example given below:

(�l int ref. (�x int.if !l < max then (l := !l + 1; x) else �))(ref(0)) : int → int

where the local variable restricts the number of function calls and causes divergence after
maxuses (see also Examples3, 21, 27 and 28). This encapsulates the state within the func-
tion much like in object-oriented programming. Indeed, that mechanism can be employed
to define objects and implement basic object-oriented features [25]. The combination of
imperative and functional features present in ML turns out quite difficult to reason about
[23]. In fact we are going to show that already at second order finitary program equivalence
is undecidable. On the other hand, we will identify a language fragment with second-order
procedures which can be captured via regular languages and which still contains many ex-
amples considered in the literature [23,26]. The language will include some terms whose
game semantics is not strictly regular. Then, instead of the full semantics, we will use a
suitable regular representative.

Our language of study is finitaryRML for which a fully abstract game model was given
by Abramsky and McCusker [5].RML bears close resemblance to Reduced ML as studied
by Pitts and Stark [23,26] with one important distinction.RML is equipped with a variable
constructormkvar, which can be used to design user-defined variable objects that do not
have to behave like standard memory cells. In general this feature makesRML contexts more
discriminating as far as program equivalence is concerned, but this happens only when the
types of the terms involved have negative1 occurrences ofint ref. In other casesRML can
simply be considered a conservative extension of Reduced ML and then our results are
immediately applicable to Reduced ML, including the undecidability result which does not

1 i.e. in the left-hand scope of a odd number of arrows.



Download	English	Version:

https://daneshyari.com/en/article/9657846

Download	Persian	Version:

https://daneshyari.com/article/9657846

Daneshyari.com

https://daneshyari.com/en/article/9657846
https://daneshyari.com/article/9657846
https://daneshyari.com/

