
Theoretical Computer Science 337 (2005) 1–50
www.elsevier.com/locate/tcs

Fundamental Study

Transforming semantics by abstract interpretation

Roberto Giacobazzi∗, Isabella Mastroeni
Dipartimento di Informatica, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy

Received 3 February 2004; received in revised form 7 December 2004; accepted 13 December 2004

Communicated by G. Levi

Abstract

In 1997, Cousot introduced a hierarchy where semantics are related with each other by abstract
interpretation. In this field we consider the standard abstract domain transformers, devoted to refine
abstract domains in order to include attribute independent and relational information, respectively the
reduced product and power of abstract domains, as domain operations to systematically design and
compare semantics of programming languages by abstract interpretation. We first prove that natural
semantics can be decomposed in terms of complementary attribute independent observables, leading
to an algebraic characterization of the symmetric structure of the hierarchy. Moreover, we character-
ize some structural property of semantics, such as their compositionality, in terms of simple abstract
domain equations. This provides an equational presentation of most well known semantics, which is
parametric on the observable and structural property of the semantics, making it possible to systemat-
ically derive abstract semantics, e.g. for program analysis, as solutions of abstract domain equations.
© 2005 Elsevier B.V. All rights reserved.

Keywords:Abstract interpretation; Comparative semantics; Domain theory; Compositionality; Constraint
programming

1. Introduction

Since its origin in 1977, abstract interpretation[11] has been widely used, implicitly
or explicitly, to describe and formalize approximate computations in many different areas
of computer science, from its very beginning use in formalizing (compile-time) program

∗ Corresponding author. Tel.: +39458027995; fax: +39458027982.
E-mail addresses:roberto.giacobazzi@univr.it(R. Giacobazzi),mastroeni@sci.univr.it(I. Mastroeni).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.021

http://www.elsevier.com/locate/tcs
mailto:roberto.giacobazzi@univr.it
mailto:mastroeni@sci.univr.it


2 R. Giacobazzi, I. Mastroeni / Theoretical Computer Science 337 (2005) 1–50

analysis frameworks to more recent applications in model checking, program verification,
data security, type inference, automateddeduction, andcomparative semantics. This justifies
a now well established definition of abstract interpretation asa general theory to approx-
imate the semantics of discrete dynamic systems[8]. This is particularly striking in com-
parative semantics, where semantics at different levels of abstraction can be compared with
each other by abstract interpretation[10]. In this paper, we analyze the most well-known
structural properties of semantics, such as their precision, compositionality, and relation
between complementary observables, by using standard abstract interpretation techniques.
We prove that most of these properties be characterized in terms of properties of the corre-
sponding abstractions. This is achieved by isolating a suitable set of abstract domain trans-
formers which allows us to design abstractions accordingly, providing a characterization
of semantics of programming languages as solutions of simple abstract domain equations,
involving both some basic observable property which has to be observed by the semantics
and the abstract domain transformers necessary in order to achieve a suitable structural
property.

1.1. The scenario

Semantics is central in the construction of any abstract interpretation. The so-calledcon-
crete semanticsspecifies the observable property of programbehavior and anymore abstract
semantics, e.g. decidable semantics for program analysis, can be derived by abstraction.
As a consequence, a semantics, at any level of abstraction, can be fully specified as an
abstract interpretation of a more concrete semantics. This key idea is the basis of Cousot’s
design of a complete hierarchy of semantics of programming languages[9,15]. A number of
semantics including big-step, termination and non-termination, Plotkin’s natural, Smyth’s
demonic, Hoare’s angelic relational and corresponding denotational, Dijkstra’s predicate
transformer weakest-precondition and weakest-liberal precondition and Hoare’s partial and
total axiomatic semantics, have all been derived by successive abstractions from an (op-
erational) maximal trace semantics of a transition system. The resulting hierarchy (here
called Cousot’s hierarchy) provides a complete account on the structure and the relative
precision of most well known semantics of programming languages. One of the major
challenge in Cousot’s construction is thatsemantics are abstract domains. Therefore they
can be transformed, refined, decomposed, and composed similarly to what is usually done
with abstract domains in static program analysis. This view of semantics as domains pro-
vides both a better insight on the structure and relative precision of traditional well known
semantics of programming languages and the possibility to systematically specify new se-
mantics by composition, decomposition, refinement and simplification of existing ones, by
manipulating the corresponding domains.

1.2. The main results

In this paper, we treat the Cousot’s hierarchy of semantics as analgebra of semantics,
namely we apply algebraic operations to semantics, here seen as abstract domains. Our
aim is to relate the properties of semantics with the properties of the abstract domain
transformations used in their design. This is achieved by considering the main operations



Download	English	Version:

https://daneshyari.com/en/article/9657851

Download	Persian	Version:

https://daneshyari.com/article/9657851

Daneshyari.com

https://daneshyari.com/en/article/9657851
https://daneshyari.com/article/9657851
https://daneshyari.com/

