
Theoretical Computer Science 331 (2005) 367–396
www.elsevier.com/locate/tcs

A calculus for reasoning about software
composition

Franz Achermann, Oscar Nierstrasz∗
Software Composition Group, University of Bern, Switzerland

Abstract

Although the termsoftware componenthas become commonplace, there is no universally accepted
definition of the term, nor does there exist a common foundation for specifying various kinds of
components and their compositions. We propose such a foundation. The Piccola calculus is a process
calculus, based on the asynchronous�-calculus, extended withexplicit namespaces. The calculus is
high level, rather than minimal, and is consequently convenient for expressing and reasoning about
software components, and differentstylesof composition. We motivate and present the calculus,
and outline how it is used to specify the semantics ofPiccola , a small composition language. We
demonstrate how the calculus can be used to simplify compositions by partial evaluation, and we
briefly outline some other applications of the calculus to reasoning about compositional styles.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Software components; Process calculi; Software architecture

1. Introduction

Component-Based Software Development (CBSD) offers us the promise of flexible ap-
plications being constructed from stable, robust software components. But how are com-
ponents plugged into an application? How do we specify the way in which components are
configured and composed?

In addition to components, we clearly need some means to specify compositions of com-
ponents. Acomposition language[39] is a language for specifying operators for connecting

∗ Corresponding author.
E-mail address:oscar.nierstrasz@acm.org(O. Nierstrasz).

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.022

http://www.elsevier.com/locate/tcs
mailto:oscar.nierstrasz@acm.org


368 F. Achermann, O. Nierstrasz / Theoretical Computer Science 331 (2005) 367–396

components (i.e., “connectors”),glueabstractions for adapting component interfaces, and
scripts that instantiate and connect components.Piccola [4,6] is a prototype for such a
composition language, andJPiccola is an implementation which targets the composition
of Java software components[38].

A key challenge for a composition language is to offer a means to answer the question,
What, precisely, do we mean by composition? There are many different notions of compo-
nent composition and interconnection in practice, so a composition language must offer a
neutral foundation in which different forms of composition can be expressed. We therefore
need asemantic foundationfor specifying compositional abstractions. Components may be
configured and adapted in many different ways, which may or may not have an impact on
the resulting composition. We therefore also need to reason aboutequivalenceof different
expressions of composition.

Drawing from our experience modeling various component models, we have developed
the Piccola calculus as a tool for expressing the semantics of software composition and
for reasoning about equivalence of compositions. The Piccola calculus extends the asy-
chronous�-calculus[32,45] with forms—first-class, extensible namespaces[5]. Forms
are not only convenient for expressing components, but play other important roles as
well.

This calculus serves both as the semantic target and as an executable abstract machine
for Piccola. In this paper we first motivate the calculus by establishing a set of requirements
for modeling composition of software components in Section2. Next, we address these
requirements by presenting the syntax and semantics of the Piccola calculus in Section3.
In section4 we provide a brief overview of thePiccola language, and summarize how the
calculus helps us to define its semantics. In Section5, we show how the calculus helps us to
reason aboutPiccola compositions and optimize the language bridge by partial evaluation
while preserving its semantics. Finally, we conclude with a few remarks about related and
ongoing work in Sections6 and7.

2. Modeling software composition

We take as our starting point the view that

Applications = Components + Scripts,

that is, component-based applications are (ideally) made up of stable, off-the-shelf compo-
nents, and scripts that plug them together[6]. Scripts (ideally) make use of high-level con-
nectors that coordinate the services of various components[3,36,52]. Furthermore, complex
applications may need services of components that depend on very different architectural
assumptions[18]. In these cases,glue codeis needed to adapt components to different
architectural styles[50,51].

A foundation for modeling software components must therefore be suitable for express-
ing compositional styles, scripts, coordination abstractions and glue code. Fig.1 sum-
marizes the requirements, and illustrates howPiccola and the Piccola calculus support
them.



Download	English	Version:

https://daneshyari.com/en/article/9657950

Download	Persian	Version:

https://daneshyari.com/article/9657950

Daneshyari.com

https://daneshyari.com/en/article/9657950
https://daneshyari.com/article/9657950
https://daneshyari.com/

