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a b s t r a c t

This paper studies necessary and sufficient preference-based conditions for differentiability of risk averse
(prudent, or temperate) von Neumann–Morgenstern utility functions. The very idea to devise those
conditions is based on the reverse claim of an old observation by Arrow that a risk-averse expected-
utility maximizer will always accept a sufficiently small stake in any positive expected-value bet if her
von Neumann–Morgenstern utility function is differentiable.
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1. Introduction

The expected utility theory originated by von Neumann and
Morgenstern (1944) is an indispensable tool in economic analy-
ses under risk. Preference structures to guarantee the existence
of a von Neumann–Morgenstern (vNM) utility function are well
known under various structural assumptions, since they have been
extensively studied and generalized in the last half century (see, for
example, Fishburn, 1970, 1982, Hammond, 1999). In addition, con-
tinuity, concavity, and differentiability of the function are also im-
portant analytical properties in economic applications.

Conditions which imply continuity and concavity can be stated
in terms of decisionmaker’s preferences for risks, i.e., simple prob-
ability distributions over the final wealth levels. On the other hand,
although differentiability of vNMutility functions is commonly im-
posed as a technically convenient assumption in economic applica-
tions, there seems to be no attempt to examine preference-based
characterizations except Nielsen (1999). However, his conditions
are indirectly formulated by preferences through risk and proba-
bility premia for small risks.

This paper studies higher-order differentiabilities up to three
times. We develop necessary and sufficient preference-based con-
ditions for differentiability of risk averse (prudent or temperate)
vNM utility functions. The very idea to devise our differentiabil-
ity conditions is based on the reverse claim of the following old
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observation by Arrow (1971): a risk-averse expected-utility maxi-
mizer will always accept a sufficiently small stake in any positive
expected-value betwhen her vNMutility function is differentiable.
Although it is well known that a concave (or convex) function de-
fined on a real interval is differentiable on all points perhaps except
at most countable points in the domain, I believe that it would be
of interest and a theoretical contribution in decisionmaking under
risk to uncover behavioral conditions for differentiability of vNM
utility functions which have long been ignored or no one simply
came across in the literature.

The paper is organized as follows. In Section 2, the first char-
acterization, which is Arrow’s reverse claim, saying that the de-
cision maker exhibits preference for small positive risk taking, is
introduced and discussed. When the decision maker’s vNM util-
ity function u is strictly increasing and concave (i.e., risk averse),
it is proved that u is differentiable. Section 3 assumes that the
first derivative u′ of u exists and that the decision maker is pru-
dent in the sense that u′ is strictly decreasing and convex. Then
we present and discuss the second characterization, in which the
decision maker is said to exhibit preference for downward shift of
small positive risks. For the prudent decision maker with the first
derivative u′, we prove that the second derivative u′′ exists and is
increasing. In Section 4, it is assumed that the second derivative u′′

ofu exists and that the decisionmaker is temperate in the following
sense: u′′ is strictly increasing and concave. Then the third char-
acterization is devised and discussed so that the decision maker
exhibits preference for downward augmentation of small positive
risks. For the temperate decisionmaker with the second derivative
u′′, it is proved that the third derivative u′′′ exists and is decreasing.
Section 5 concludes the paper.
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2. Differentiability

Throughout the paper, let u be a strictly increasing and contin-
uous vNM utility function over an open real interval I ⊆ R. Each
x ∈ I is interpreted as a decision maker’s wealth level. Random
variables are measurable functions on an algebra of subsets of a
state space S. By R, we shall denote the set of all ‘‘simple’’ random
variables, or risks, which take on a finite number of wealth levels
in I . For riskx ∈ R, let Px denote its induced probability distribu-
tion function on I , so the support {x ∈ I : Px (x) > 0} of Px is finite.
Given a sufficiently rich set S, it is assumed throughout that any
probability distribution function with a finite support can be gen-
erated by a risk in R.

A random variable is nondegenerate if its support is not a
singleton. Each x ∈ I will be identifiedwith the degenerate risk that
yieldswealth level xwith probability one. By ⟨x,y⟩, we shall denote
a 50–50 risk that yields riskx with probability one-half and risky otherwise. Addition and positive-scalar multiplication of risks
are defined as follows. When we add two risks, we shall always
assume that they are statistically independent, i.e., forx,y ∈ R,x +y means a risk that yields wealth level x + y with probability
Px(x)Py(y). In particular,x + w for w ∈ I is a risk which augments
the final wealth level from the sure amount w by the risk x. It
may be interpreted as taking riskx at wealth level w. For ϵ > 0,
a positive-scalar multiplication ϵx of riskx, called a proportional
fraction ofx, is defined to be a risk that yields wealth level ϵx with
probability Px(x). When 0 < ϵ < 1, ϵx is said to be a small
proportional fraction ofx. Do not confusex+xwith 2x, where those
are different risks by definition. We shall assume that all risks and
their additions appeared in what follows take values in I .

Expected value and expected utility of x ∈ R w.r.t. u are
respectively given by

Ex =


x

xPx(x),
Eu(x) =


x

u(x)Px(x).
We say that a riskx is fair (resp., positive, or negative) if Ex = 0
(resp., Ex > 0, or Ex < 0). Define

R0
= {x ∈ R : Ex = 0} ,

R+
= {x ∈ R : Ex > 0} .

Let ≻ be an asymmetric binary relation on R, read as ‘‘is preferred
to.’’ Thus,x ≻ y means that wealth level determined by riskx
is preferred to wealth level determined by y. Also, for example,x + w ≻ y + w may read as ‘‘taking riskx at wealth level w
is preferred to taking risky at wealth level w.’’ Weak preference
and indifference relations, respectively denoted by % and ∼, are
defined as usual: for allx,y ∈ R,x % y if ¬ (y ≻x);x ∼ y if
¬ (x ≻y) and ¬ (y ≻x).

Throughout the paper, we shall assume that ≻ on R is repre-
sented by maximization of expected utilities w.r.t. u, i.e., for allx,y ∈ R and all w ∈ I ,x + w ≻y + w ⇐⇒ Eu(x + w) > Eu(y + w).

That is, taking riskx at wealth level w is preferred to taking risky
at wealth level w if and only if expected utility ofx + w is greater
than expected utility ofy + w.

In what follows, under the assumptions introduced above, we
shall impose two additional conditions on (R, ≻) to guarantee
differentiability of u. In those conditions, we are concerned with
which risks in R the decision maker prefers to (or not to) take at
a wealth level. The first condition we shall impose on (R, ≻) is
the well-known property of risk aversion, (i.e., aversion to fair risk
taking), which asserts that the decision maker prefers not to take
any nondegenerate fair risk at any wealth level. This is stated as
follows.

Axiom A1 (Aversion to Fair Risk Taking). For all nondegeneratex ∈

R0 and all w ∈ I , w ≻x + w.

The well-known implication of this axiom is that the vNM utility
function u is concave (in the strict sense throughout). Of course,
conversely, (R, ≻) with u concave exhibits aversion to fair risk
taking.

We note that, assuming aversion to fair risk taking, every neg-
ative risk must be preferred not to take at any wealth level. To
see this, consider any nondegeneratex ∈ R with Ex < 0. Then
Ex + δ = 0 for some δ > 0. By aversion to fair risk taking,
w ≻ x + δ + w. Since u is strictly increasing, it follows from the
first order stochastic dominance thatx + δ + w ≻ x + w. Thus
w ≻x + w, sox is preferred not to take at any wealth level w. The
degenerate case is obvious.

On the other hand, any trivial positive riskx withx ≥ 0, mean-
ing that x ≥ 0 whenever Px (x) > 0, is preferred to take at any
wealth level. For a nontrivial positive riskx with Px (x) > 0 for
some x < 0, however, the situation is blurred because its prefer-
ability at a wealth level depends on u. The following theorem clar-
ifies the situation.

Theorem 2.1. (1) If a positive riskx is preferred to take at a wealth
level w ∈ I , then so are all small proportional fractions of the risk
at w, whenever u is concave.

(2) Any positive risk is preferred to take at any wealth level and any
negative risk is preferred not to take at anywealth level if and only
if u is a linear function.

Proof. (1) Suppose that u is concave. Take anx ∈ R+. Assume thatx+w ≻ w. Then Eu(x+w)−u(w) > 0. Sinceu is concave, it follows
that, for all x ∈ I and all 0 < ϵ < 1,

u(ϵx + w) − u(w) > ϵ (u(x + w) − u(w)) .

Thus

Eu(ϵx + w) − u(w) > ϵ [Eu(x + w) − u(w)] > 0,

so that Eu(ϵx+ w) > u(w). Hence any small proportional fraction
ϵx ofx is preferred to take at wealth level w.

(2) Sufficiency of linearity of u is easily obtained. Thus we show
its necessity. Suppose that any positive risk is preferred to take at
any wealth level and that any negative risk is preferred not to take
at any wealth level. Take anyx ∈ R0. Then E (x + δ) > 0 for any
δ > 0. For any w ∈ I , it follows from the assumption thatx + δ + w ≻ w,

so that Eu(x+ δ +w) > u(w). If Eu(x+w) < u(w), then it follows
from continuity and monotonicity of u that, for some ϵ > 0,

Eu(x + ϵ + w) < u(w).

This contradicts the assumption. Hence Eu(x + w) ≥ u(w).
Similarly, for any δ > 0, w ≻ x − δ + w, so that u (w) >
Eu (x − δ + w). If Eu(x + w) > u(w), then Eu(x − ϵ + w) > u(w)
for some ϵ > 0, a contradiction. Therefore, Eu(x + w) ≤ u(w).
Hence we conclude that Eu(x + w) = u(w). Sincex ∈ R0 and w
are arbitrary, umust be linear. �

It follows from Theorem 2.1 that, if u is not linear but concave,
then there exists a positive risk that is preferred not to take at some
wealth level. At this point, we do not know whether or not some
small proportional fraction of such a positive risk is preferred to
take at the wealth level. The following axiom requires, however,
that, for any positive risk and any wealth level w, some small pro-
portional fraction of the riskmust be always preferred to take atw.

Axiom A2 (Preference for Small Positive Risk Taking). For allx ∈ R+

and all w ∈ I , there exists a 0 < ϵ < 1 such that ϵx + w ≻ w.



Download English Version:

https://daneshyari.com/en/article/965911

Download Persian Version:

https://daneshyari.com/article/965911

Daneshyari.com

https://daneshyari.com/en/article/965911
https://daneshyari.com/article/965911
https://daneshyari.com

