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Abstract

We propose to find the propagation constants of modes in layered media by means of signal identification methods. To this
effect we employ Cauchy’s theorem, conformal mapping and Fast Fourier Transform (FFT) techniques to generate relevant
Hankel moments, afterwards to be processed with selected signal identification algorithms. The method, terminated by a few
Newton steps, provides a batch of highly accurate roots in appropriate disks or half-disks.
� 2004 Elsevier GmbH. All rights reserved.
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1. Introduction

Leaky waves, which are found as complex solutions of
the dispersion relation for dielectric waveguides, play an im-
portant role in many electromagnetic (EM) analysis tools
[1–3] as well as in practical devices such as leaky wave
antennas[4]. Locating the complex zeros, however, can be
quite cumbersome, especially when the dielectric substrate
consists of a number of different dielectric layers. In this
paper, we propose techniques based on signal identification
algorithms to efficiently and accurately locate the complex
zeros of dispersion relations for layered media. The tech-
niques can be applied for layered substrates consisting of
an arbitrary number of layers. The top and bottom substrate
can either be open or, for numerical reasons, terminated by
a perfectly matched layer (PML)[5–7].
Signal identification of exponential sum models (ESM) is

a frequently occurring and recurrent topic in signal process-
ing. The reason for this is that many physical signals, from
time series in medicine and economics to spectral analysis
in astronomy and sonar applications[8,9] can be expressed
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as sums of damped exponentials. Moreover, ESM has also
been used in EM analysis techniques, e.g. in the complex im-
age method for determining the Green’s function in layered
media. More mathematically speaking, it can be proved that
large classes of signals can be expressed as infinite sums of
exponentials, due to theirLp completeness over selected in-
tervals[10,11]. In addition, modelling by exponential sums
is inherent in linear systems theory[12] and its underlying
Hankel matrix framework[13,14]. Lastly and rather unex-
pectedly, exponential signal identification has recently been
used for reconstructing polygonal shapes from geometrical
moments[15].
In this paper, we propose to find the roots of transcen-

dental equations by means of signal identification tech-
niques. As a generalization of methods in[16,17], we
employ Cauchy’s theorem, conformal mapping and FFT
techniques to generate the relevant Hankel moments, which
are afterwards processed with selected signal identification
algorithms. Our choice (not exhaustive) is one of the four
following algorithms: the Pencil-of-Function method[18],
the SVD rank-based method[9], the Prony–Burrus–Parks
method [19,20] and a Neville-type interpolation method
[21]. Applied to finding the propagation constants of the
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leaky modes in stratified media, which correspond to the
complex zeros of transcendental dispersion relations, the
method, terminated by a few Newton steps, provides a batch
of highly accurate roots in selected disks or half-disks.

2. Roots of transcendental equations

It is well-known[16,17]that, given a functionF(z)which
is analytic in a simply connected open domain� bounded
by a simple Jordan curve�, except for a simple pole atp0,
we can recover this pole by means of the formula

p0 =
∮

� zF (z)dz∮
� F(z)dz

. (1)

This follows at once from Cauchy’s theorem. For an analytic
function f (z) exhibiting a single simple zeroz0 in � we
can takeF(z) = 1/f (z) in order to findz0 by formula (1).
Of course, one must be sure that only one zero is present
in �. This can be tested by making use of the principle of
the argument[22], which states that for an analytic function
f (z) with m zeros inside� we can write

m = 1

2�i

∮
�

f ′(z)
f (z)

dz. (2)

Whenm=1, formula (1) will yield the unique zero. In order
to generalize the approach to more than one zero we need
the following [17].

Theorem 1. Let the analytic functionf (z) have exactly m
simple zerosz1, z2, . . . , zm in � and let g(z) be analytic
such thatg(zk) �= 0 for k = 1,2, . . . , m. Then there exist
non-vanishing coefficients̃dk, k=1,2, . . . , m such that the
Hankel moments

hn = 1

2�i

∮
�

g(z)

f (z)
zn dz

=
m∑

k=1

d̃kz
n
k , n = 0,1,2, . . . . (3)

Proof. The functionf (z) can be written as

f (z) =
∏m

k=1 (z − zk)

r(z)
, (4)

wherer(z) is analytic in� with r(z) �= 0. Since

1∏m
k=1 (z − zk)

=
m∑

k=1

ck

z − zk
(5)

with

ck = 1∏
l �=k (zk − zl)

,

application of Cauchy’s theorem yields

hn = 1

2�i

∮
�

g(z)

f (z)
zn dz =

m∑
k=1

ckg(zk)r(zk)z
n
k (6)

with n = 0,1,2, . . . . This completes the proof.�

Note that a straightforward choice for the functiong(z)
is the constant functiong(z)= 1. The other straightforward
choiceg(z) = f ′(z), with n = 0, will be employed mainly
to determine the number of zerosm.
We will restrict ourselves to zeros inD, the open unit disk

for the following reason: consider the conformal mapping
�(u) fromD onto�. This mapping always exists, by virtue
of the Riemann mapping theorem[23]. Then the zeros of
f (z) in� correspond with the zeros off (�(u)) inD. Taking
g(u) = 1, the Hankel momentshn can be written as

hn = 1

2�

∫ 2�

0

ei(n+1)�

f (�(ei�))
d� =

m∑
k=1

dku
n
k (7)

with n = 0,1,2, . . . . Opting for the(N + 1)-point closed
trapezoidal quadrature rule we obtain

hn = 1

N

N−1∑
k=0

e2�i(n+1)k/N

f (�(e2�ik/N ))
+ �n, (8)

where �n is the error associated with the quadrature rule.
Assuming that the error terms are sufficiently small—see the
appendix for some pertinent error bounds—and choosing
N as a power of two, (8) is most effectively calculated by
means of an FFT. After obtaining the Hankel moments, and
processing them with one or more of the signal identification
algorithms of the next section, we finally obtain the unit disk
zerosuk and the�-domain zeros byzk = �(uk).

3. Signal identification algorithms

Given the Hankel moments

hn =
m∑

k=1

dku
n
k , n = 0,1,2, . . . , (9)

the zerosuk are recovered by judiciously processing the mo-
mentshn by means of one of the following four algorithms.
Note that there exist other algorithms, such as the ones in
[13,24], but we have to be restrictive somehow, and therefore
we limit ourselves to the non-exhaustive but representative
list below.

3.1. Algorithm 1: Pencil-of-Function method

Consider them × m Hankel matrix

Hm =

 h0 · · · hm−1

... · · · ...

hm−1 · · · h2m−2


 (10)
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