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Abstract

In this note, we are concerned with the asymptotic approximation of a class of double integrals which can be represented
as an angular-spectrum superposition. These double integrals typically appear in electromagnetic scattering problems. Based
on the synthetic manipulation of the method of steepest descent path, approximate expressions of the double integrals are
derived in terms of the leading term of the contribution to the asymptotic expansions.
� 2004 Elsevier GmbH. All rights reserved.
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1. Introduction

The methods of steepest descent path (SDP) and station-
ary phase are commonly useful for the asymptotic evalua-
tion of the complicated integrals in electromagnetics partic-
ularly in the far zone[1–5]. For the one-dimensional case, it
seems no restrictions need to be enforced on the integrands
to apply these classic asymptotic methods, although some-
times the construction of the SDP is difficult as also is the
establishment of the uniform asymptotic expansions in the
neighborhoods of the singularities of the integrands close to
the saddle points[6,7]. But for the asymptotic approxima-
tion of double integrals of the general form

I (�) =
∫ ∫

D

�(x, y)ei�h(x,y) dx dy, � → ∞, (1)

the stationary phase method is generally used provided
that the phase function�(x, y) is a real-valued function
in the bounded domainD ⊂ R2 [2,7–9]. When�(x, y) is
complex-valued in general, asymptotic expansions of the
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double integrals are still possible to be obtained if�(x, y)
is smooth sufficiently and vanishes on the boundary of
D. In this case, the dominant contribution to the asymp-
totic expansions may come from the critical points of
the first kind which satisfy�x = �y = 0 [7]. However,
if �(x, y) is complex-valued but not differentiable every-
where inD, additional work is necessary to account for
the contribution of the boundary stationary points to the
asymptotic expansions of the double integrals[10,11].1

These boundary stationary points are certainly located
in the vicinities of where�(x, y) is not differentiable,
i.e., branch points and singularities. Therefore, curves of
stationary points are formed on the boundaries of the
sub-domains{Dj } ⊂ D which are disjoined with each
other by the “deleted” neighborhoods of nondifferenti-
ation. In addition, because�(x, y) is complex-valued,
approximation of the Laplace-type integrals should be

1 Generally, these boundary stationary points are the critical points of
the second or the third kind. The critical points of the second type are
points on the domain’s boundary� at which a level curve of�(x, y) is
tangential to�; while the critical points of the third type are points where
� has a discontinuously turning tangent. See[7] for more information.
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manipulated on {Dj } for the asymptotic evaluation
of I (�).2

In this note, we present a simpler way to operate the
asymptotic approximation of a class of double integrals
which are derived from an angular-spectrum representation
of the field-related entities. The phase function of these dou-
ble integrals is complex-valued and differentiable not every-
where, corresponding to an angular spectrum of both prop-
agating and surface waves. After departing from the SDP
method operated in a synthetic fashion, the approximation
of these double integrals is achieved by using the contour
deformation to confine the integration on a small domain de-
fined by two local SDPs. The saddle points along each SDP
are employed to construct the truncated Taylor expansion of
the complex-valued phase function which is differentiable
on the mapped domain. The double integral is then asymp-
totically evaluated by the lowest order in the far-zone limit.
A condition for the asymptotic approximation to be valid is
also briefly commented.

2. Theory

To begin with, let us suppose the vectorr = (x, y, z)

defined on the upper half spaceR3+ = {z>0} and a double
integralG(r ) generally having the form

G(r ) =
∫ ∫

R2
f (kx, ky)e

i(kxx+kyy+kzz) dkx dky, (2)

wherekz =
√
k2

0 − k2
x − k2

y is defined on the top Riemann

surface such that Im(kz)�0 for (kx, ky) ∈ R2 andk0 ∈ R+.
Generally speaking,G(r ) represents a class of functions that
have the physical importance in reducing a field-related en-
tity into an angular-spectrum superposition. As a simple ex-
ample ofG(r ), the free-space dyadic Green function (DGF)
G

0
(R) is represented in the angular-spectrum form as[12]

G
0
(R) = i

4�2

∫ ∫
R2
f (kx, ky)ei(kxX+kyY±kzZ)

× dkx dky, (3)

whereR = (X, Y, Z) 
= 0, and the dyadic phase function

f (kx, ky) = ss+ p±p±√
k2

0 − k2
x − k2

y

, (4)

with s andp± denoting the linear polarization vectors ofs-
andp-type, respectively[13].

2 If there is a curve of stationary points on the boundary�, the
leading term of its contribution to the asymptotic expansion ofI (�) in
(1) is O(�−1) as � → ∞. Similarly, for the asymptotic expansion of
the Laplace-type integralI ′(�) = ∫ ∫

D�(x, y)exp[−�h(x, y)] dx dy, if
the stationary points are the critical points of the first kind, then the
leading term ofI ′(�) is alsoO(�−1) as� → +∞. See[7,11] for more
information.

For the following analysis of (2), we assume hereonwards
that |G(r )|<∞ is well defined byf (kx, ky) ∈ L1(R2).
Also, the functionf (kx, ky) is independent ofr and has no
singularities on the complex domain�=D×Rc ∪Rc ×D,
whereD is a complex neighborhood of the real axis, and
Rc = C\R.

According to Fubini’s theorem[14], G(r ) of (2) could be
rewritten as

G(r ) =
∫ ∞

−∞
eikxx dkx

∫ ∞

−∞
f (kx, ky)

× ei(kyy+kzz) dky. (5)

By denoting

g(kx) =
∫ ∞

−∞
f (kx, ky)e

i(kyy+kzz) dky, (6)

we know from Fubini’s theorem thatg(kx) ∈ L1(R) almost
everywhere because off (kx, ky) ∈ L1(R2). In fact, g(kx)
may have isolated singularities{sj } which are determined
by the functionf (kx, ky). Becausef (kx, ky) is assumed to
be nonsingular in�, these isolated singularities ofg(kx),
if exist, are only real-valued. Furthermore,g(kx) can be
expanded in the vicinity of anysj ∈ R such that

g(kx) =
∞∑
m=0

am(kx − sj )
�m−1, (7)

where�m are real-valued amplitudes. Sinceg(kx) ∈ L1(R),
{sj } are not likely to be poles, therefore,�m >0 is validated
for anym�0.

For the present purpose, we reformg(kx) as the multipli-
cation of two parts

g(kx) = f̃ (kx)exp(ik�x�x), (8)

where�x = √
r2 − x2, r = |r | and k�x =

√
k2

0 − k2
x with

Im(k�x)�0 for realkx . Substituting (8) into (5) and noting
that f̃ (kx) has no poles, it is feasible to reduceG(r ) of (5)
into a contour integral along the SDP of the phase function.
Therefore, we obtain synthetically the first asymptotic ap-
proximation

G(r ) =
∫ ∞

−∞
f̃ (kx)e

i(kxx+k�x�x) dkx

=
∫

SDP1

f̃ (kx)e
ik0r cos(�x−	x) dkx

≈
∫

SDPloc
1

f̃ (kx)e
ik0r cos(�x−	x) dkx, (9)

as k0r → ∞. In (9), kx = k0 cos�x , 	x = cos−1( x
r
) and

SDP1 : (−∞,∞) �→ C is determined by the parametriza-
tion of �x (or kx) through the equation Re[cos(�x − 	x) −
1]=0. SDPloc

1 denotes the local path of the SDP1 that passes
through the saddle pointkxs = k0 cos	x .
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