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a b s t r a c t

This paper studies stochastic stability methods applied to processes on general state spaces. This includes
settings in which agents repeatedly interact and choose from an uncountable set of strategies. Dynamics
exist for which the stochastically stable states differ from those of any reasonable finite discretization.
When there are a finite number of rest points of the unperturbed dynamic, sufficient conditions for
analogues of results from the finite state space literature are derived and studied. Illustrative examples
are given.
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1. Introduction

The occurrence of social learning and the convergence of agents’
behavior via processes of adaptive behavior is well-documented
within economics (e.g. Chong et al., 2006; Selten and Apesteguia,
2005). The possibility of multiple resting points for such processes
naturally leads one to questionwhich of these stable states is more
plausible from an economic perspective. Strongly influenced by
evolutionary game theory (Smith and Price, 1973), a literature has
grown that analyses the robustness of stable states of social learn-
ing dynamics to random errors made by players in their choice
of action (Kandori et al., 1993; Young, 1993a). These ideas have
been applied to a variety of economic situations, including bargain-
ing (Binmore et al., 2003; Naidu et al., 2010), Nash demand games
(Young, 1993b; Agastya, 1999), exchange economies (Serrano and
Volij, 2008), local interaction on networks and the persistence of
altruistic behavior (Eshel et al., 1998).

A common approach when assessing the robustness of stable
states of social learning dynamics has been that pioneered by Kan-
dori et al. (1993) and Young (1993a), building on the work of
Freidlin and Wentzell (1984). Agents are assumed to make errors
independently and when they do make an error are assumed to
play a strategy chosen at random from a distribution with full
support on a finite set of strategies. This imposes a mathematical
structure on the process that leads to clear and appealing charac-
terization results.
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Unfortunately, such results cannot be straightforwardly applied
when agents have non-finite sets of strategies.1 Even assuming
the convergence of the underlying social learning dynamic, the
addition of random errors can lead to behavior which hinders
efforts to obtain a clear cut characterization of the long run pattern
of play. This paper takes up the task of analyzing the problems and
intricacies which arise and, when there are a finite number of rest
points of the underlying dynamic, determines a set of sufficient
conditions which enable existing results to be applied to models
with continuous state spaces. These conditions include a continuity
requirement on error distributions and players’ responses as a
function of the current state, an asymptotic stability condition and
a condition which ensures a specific type of discontinuity does not
occur at rest points of the underlying dynamic. Examples are given
showing how no subset of the conditions is sufficient on its own.

Fortunately, all of these conditions are satisfied for many
common models found in economics. Typical error distributions
of the kind described above coupled with the continuous best
responses found in many models of industrial organization will
often satisfy all of the conditions. This study applies the theory to
linear quadratic games and to population models in the style of
Kandori et al. (1993).

A related paper is that of Feinberg (2006), which also looks
at discrete time, continuous state space processes. However, the
paper in question imposes the strong condition that the perturbed

1 An early paper in the literature (Foster and Young, 1990) has an infinite state
space and a continuous time dynamic in which perturbations are modeled as a
Wiener process. However, it differs markedly from the majority of the literature,
in which the error distributions are irrelevant to the stability results as long as they
have full support.
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process be governed by transition probabilities that are continuous
functions of the current state of the process. The bulk of the analysis
in the current paper concerns situations where this is not the case.
Moreover, Feinberg considers a particular unperturbed dynamic
and state space, whereas the current paper is more general in
its scope. Schenk-Hoppé (2000) adapts the results of Freidlin and
Wentzell (1984) and Ellison (2000) for use in finding stochastically
stable states in a continuous strategy oligopoly model equipped
with an imitation dynamic.

By considering finite state spaces, Young (1993a) dispenses
with the need for regularity assumptions found in treatments of
perturbed dynamics by Freidlin and Wentzell (1984), Kifer (1988,
1990). Specifically, all finite state spaces are compact, continuity
requirements become unnecessary, and the probability of non-
convergence to some stable state in given finite time need no
longer be bounded by a function of error probabilities. The treat-
ment of the current paper incorporates some finiteness in that
the set of orders of magnitude of one step transition probabili-
ties is taken to be finite. This allows us to use weaker continuity
requirements on transition probabilities. We also dispense with
compactness assumptions on the state space. From an economics
perspective this enables, for example, the use of the Cartesian plane
as the state space and the use of error probabilities which are in-
dependent across players.

The paper is organized as follows. Section 2 introduces the ideas
of the paper via two motivating examples. Section 3 describes the
processes of interest, gives convergence results, looks at transition
probabilities between stable states, and defines a useful regularity
property, showing how this property allows the problems associ-
ated with infinite state spaces to be circumvented. Section 4 gives
sufficient conditions for this property to hold and discusses each of
the conditions, giving examples of the problems which arise if any
condition fails to hold. Section 5 gives examples. Section 6 solves
an example from Section 2 for which our regularity condition fails
to hold. Section 7 concludes. Formal proofs are relegated to the
Appendix.

2. Motivating examples

This paper focuses on situations where agents follow some rule
when deciding how to behave. The rule can be deterministic or
random, cautious or hasty, imitative or best responding: any kind
of behavioral bias or irregularity can be represented. Usually the
rule is adaptive in the sense that an agent’s behavior is intended to
improve his lot.What reallymatters is that the rule has theMarkov
property: the past per se does not affect the future, although
features of the present shaped by the past, including memories,
are allowed to do so. We analyze situations where behavior over
time will converge towards one of a number of stable states. As
long as there is some probability of convergence to more than
one stable state, this is predictively awkward. The possibility of
random errors or idiosyncratic play justifies the introduction of
perturbed versions of the process which help in obtaining long
run predictions. There is a well-developed literature which deals
with these problems for finite state spaces,2 so the first question
that must be addressed is whether there is benefit to be had from
dealing directlywith processes on general state spaces, rather than
with finite discrete approximations.

2.1. Discretization can fail to represent the original process accurately

There is not always a suitable finite discretization of a process
available. To illustrate, we present the following example. Consider

2 See also Bergin and Lipman (1996), van Damme and Weibull (2002), Beggs
(2005).

a Markov process with state space X = [0, 1] ⊂ R endowed
with the Euclidean distancemetric. Let the process be governed by
the Markov kernel P(., .). The Markov kernel is a generalized ana-
logue of transition probabilities onMarkov chains. P(x, A) gives the
probability with which the process moves from state x to any state
within a set of states A. For notational ease, for y ∈ X , we identify
P(., y) := P(., {y}). Let P(x, x2) = 1. This process has a set of stable
states Λ = {0, 1}: from x∗

∈ Λ, P(x∗, x∗) = 1. We examine a per-
turbed variant of the process inwhich each period,with probability
1 − ε the unperturbed process is followed, and with probability ε
the new state is drawn from the uniform distribution U[[0, 1]]. This
perturbed process has an invariantmeasureπε which converges to
a measure with all weight on {0} as ε → 0: the set of stochastically
stable3 states is {0}.

Any discretized state space and process should satisfy some
properties in order for it to be a reasonable representation of the
original process. We suggest the following as reasonable restric-
tions on the discretized state space X∆ ⊆ X and the discretized un-
perturbed process P∆(., .): (a) From a state x ∈ X∆, if a set A ⊆ X is
reached with positive probability under the original process, then
the closest states to A in X∆ (under the original metric) are reached
with positive probability under the discretized process P∆(., .);
(b) If, from a state x ∈ X∆, under the original process the set of
states in X which are closer to z ∈ X∆ than to any other point in X∆

is never reached with positive probability, then z is never reached
with positive probability under the discretized process; (c) Stable
states of the original process are states of the discretized process
and therefore stable states of the discretized process by (b).

We take as a discretization of the perturbation (the uniform
distribution on X) any distribution on X∆ that places positive
probability on all states in X∆. Now, for any finite discretization
satisfying our conditions, as ε → 0, the limit of πε places positive
probability on all states in {0, 1}: discretizing the process has given
us one additional stochastically stable state.4

Finding the stochastically stable states of the original process in
this section turns out to be simple. The reason for this is that far
enough along any convergent path to a stable state, the probability
under the perturbed process of moving to the basin of attraction of
another given stable state is of constant order of ε. For example,
from any convergent path to 0 under the unperturbed process
P(., .), at any given future period t the probability under the
perturbed process of being in the basin of attraction of state is
1 is of order ε∞

= 0. There do not exist convergent paths to 0
with escape probabilities of different orders of ε. We shall define
Property C as the absence of multiple paths which converge to the
same stable state and have different orders of escape probability.
When Property C holds, we show that variants of results used
heavily in the finite state space stochastic stability literature can
be used. An important part of the current paper gives sufficient
conditions under which Property C holds.

2.2. Multiple convergent paths

The next example can be considered as a model in which there
are two possible focal points for a social norm. There are n ≥ 2

3 The use of the term ‘stochastic stability’ in the economics literature refers
almost exclusively to states with positive weight under some limiting measure.
Other uses of the term appear in the literature on dynamic processes. This paper
follows the economic usage.
4 It may be remarked that, for this example, there exist sequences of finite

discretizations such that the limit (of the sequence of discretizations) of the limits
(as ε → 0) of πε converges to the stochastically stable states of the original
process. Such a sequence does not always exist, as is apparent from the example
in Section 2.2.
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