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a b s t r a c t

In this paperwe introduce a technique for perfect simulation from the stationary distribution of a standard
model of industry dynamics. The method can be adapted to other, possibly non-monotone, regenerative
processes found in industrial organization and other fields of economics. The algorithm we propose is a
version of coupling from the past. It is straightforward to implement and exploit the regenerative property
of the process in order to achieve rapid coupling.

© 2014 Published by Elsevier B.V.

1. Introduction

The dynamics of entry and exit by firms play an essential role
in economic theory as well as in real life. Productive new entrants
replace unproductive incumbents, rejuvenating overall economic
activity. There is a large and growing literature on this economic
mechanism (see, e.g., Hopenhayn and Rogerson, 1993, Cooley and
Quadrini, 2001 or Melitz, 2003), and much of this literature builds
upon the model of entry and exit studied by Hopenhayn (1992).
The stationary distribution of entry–exitmodels of the type studied
by Hopenhayn represents a cross-sectional distribution of firms
that is both consistent with the definition of equilibrium at any
point in time and also invariant over time. For typical parameter
values the stationary distribution is uniquely defined but has no
analytical solution.1

Simulation is a useful option for computing the cross-sectional
distribution for a given exit policy, since it is not difficult to write
down an ergodic Markov process such that its stationary distri-
bution coincides with the cross-sectional stationary distribution.
This permits approximate sampling from the stationary distribu-
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existence of a positive threshold for productivity at which firms choose to exit. The
threshold introduces a nonlinearity that essentially rules out analytical methods.

tion simply by running the process from an arbitrary initial value
until it is judged to have ‘‘nearly’’ converged. Simulating until the
distribution of the state is approximately stationary is referred to
as ‘‘burn-in’’. Unfortunately the length of burn-in required is often
the subject of guesswork and heuristics.2 Moreover, regardless of
how much burn-in is performed, the resulting sample is never ex-
actly stationary, and the size of the error is once again unknown.3

In this paper we show that these problems can be overcome. By
using a variation of coupling from the past (CFTP) technique origi-
nally due to Propp andWilson (1996), we show that it is possible to
perform perfect sampling – that is, to sample exactly from the sta-
tionary distribution of this class of models – for any specified exit
threshold. In particular,wedevelop an efficient algorithm that gen-
erates exact, iid draws from the stationary distribution. For each
random seed, the algorithm terminates as soon as an exact draw
has been generated, and it is guaranteed to terminate in finite time
with probability one. Hence there is no need for the heuristics used
to judge burn-in time. Moreover, by repeating the algorithm with
independent seeds it becomes possible to generate multiple inde-
pendent draws from the stationary distribution.

2 While somemethods for computing error bounds exist, they are rarely used for
two reasons. First, they are nontrivial to compute. Second, these bounds are often
highly pessimistic, since any such bounds must address the worst case scenario
admitted by the model specification.
3 A related issue is that, for a given method, the size of the error is likely to vary

with the parameters, since the parameters change the structure of the problem. If
the burn-in is not varied accordingly, this is likely to cause bias.
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Our work draws on a large literature on CFTP that mainly exists
outside of economics, where the technique is often used formodels
with large but discrete state spaces.4 More recently, researchers
have developed techniques for implementing CFTP methods in
continuous state settings. Murdoch and Green (1998) showed that
CFTP can in principle be used in continuous state settings when
the underlying Markov process satisfies Doeblin’s condition. This
condition requires the existence of a nonnegative lower bound
function that (a) integrates to a positive value, (b) depends only
on the next state, and (c) is pointwise dominated by the transition
density function (which depends on both the current state and the
next). Theoretical work along the same lines can be found in Foss
and Tweedie (1998) and Athreya and Stenflo (2003).

Although these results are fundamental, they can be difficult to
apply. Murdoch and Green (1998) admit that their basic method,
which is in principle applicable to our model, may have ‘‘a limited
range of application for two reasons’’. First, the function associated
with Doeblin’s condition ‘‘may be too small for practical use’’ to
generate exact draws in a reasonable length of time. Second, their
method requires the user to draw from scalar multiples of the
lower bound transition density and a residual kernel. It can be
nontrivial or even impossible to explicitly calculate and draw from
these distributions. If approximations are required, this to some
degree defeats the purpose of CFTP.

For these reasons, CFTP methods tend to be popular only in
specific settings, perhaps the most notable of which is where the
underlying Markov process is stochastically monotone. For such
processes, efficient and straightforward CFTP methods are avail-
able. Corcoran and Tweedie (2001) developed general results on
CFTP particularly suitable for monotone Markov processes. An ap-
plication to economics can be found in Nishimura and Stachurski
(2010), where monotonicity makes the algorithm straightforward
to implement and analyze.

Here we develop a CFTP algorithm that is designed to produce
exact draws from the stationary distribution of Hopenhayn’s
entry–exit model, which is not monotone. We do however exploit
some monotonicity properties from Hopenhayn’s model in our
algorithm. We show that the algorithm terminates successfully in
finite time with probability one by using both the monotonicity
of productivity for incumbents and the regenerative property
introduced by new entrants. Our algorithm is distinct from
Murdoch and Green’s method discussed above (Murdoch and
Green, 1998), in that it does not use Doeblin’s condition, and does
not require explicit knowledge of the transition density.5 As long
as one can simulate the overall Markov process, one can sample
exactly from the stationary distribution using the algorithm.6

Aside from relatedmodels of industry dynamics, our techniques
can also potentially be applied to other non-monotone regenera-
tive models, such as those found in various intertemporal decision
problems. One example is the problem of optimal replacement of a
part ormachine, the performance of which degrades stochastically
over time (see, e.g., Rust, 1987).

2. Preliminaries

2.1. The entry–exit model

In this sectionwe briefly review a benchmarkmodel of firm dy-
namics due to Hopenhayn (1992). The model is set in a compet-

4 Applications range from statistical mechanics to page ranking and the design
of peer-to-peer file sharing systems. See, for example, Propp and Wilson (1996),
Kijima and Matsui (2006), Huber (2003) and Levin et al. (2009).
5 The assumptions used to show the probability one termination of the algorithm

in fact imply Doeblin’s condition for some n-step transition, but our proof of this
property does not use the latter.
6 Of course in computer implementations exactness is modulo the errors

associatedwith floating point arithmetic and imperfect randomnumber generators.

itive industry where entry and exit is endogenously determined.
In the model there is a large number of firms that produce a ho-
mogeneous good. The firms face idiosyncratic productivity shocks
that follow a Markov process on S := [0, 1]. The conditional cu-
mulative distribution function for the shock process is denoted by
F(φ′

| φ). Following Hopenhayn (1992), we impose the following
restrictions:

Assumption 2.1. F is decreasing in its second argument and, for
any ϵ > 0 and any φ ∈ S, there exists an integer n such that
F n(ϵ | φ) > 0.7

We let P denote the stochastic kernel on [0, 1] corresponding
to F . That is, P(φ, A) :=


1A(φ

′)F(dφ′
| φ) for φ ∈ S and A ∈ B,

where B represents the Borel sets on [0, 1] and 1A is the indicator
function of A. Incumbent firms exit the industry whenever their
current productivity falls below a reservation value xt . Letting Mt
be the mass of entrants at time t and ν be the Borel probability
measure from which the productivity of entrants is drawn, the
sequence of firm distributions {µt} on S satisfies µt+1(A) =
P(φ, A)1{φ ≥ xt}µt(dφ) + Mt+1ν(A) for all A ∈ B. At the

stationary equilibrium, both x andM are constant, and a stationary
distribution µ is a Borel probability8 measure µ satisfying

µ(A) =


P(φ, A)1{φ ≥ x}µ(dφ) + Mν(A) (A ∈ B). (1)

It follows from (1) and µ(S) = P(φ, S) = ν(S) = 1 that M =

M(x, µ) := µ{φ ∈ S : φ < x}. As a result, we can also write (1) as

µ(A) =


Q (φ, A)µ(dφ) (2)

where

Q (φ, A) := P(φ, A)1{φ ≥ x} + ν(A)1{φ < x}. (3)
Eq. (2) states that µ is a stationary distribution for the stochastic
kernelQ in the usual sense of time invariance. As shown byHopen-
hayn (1992), the kernel Q has only one stationary distribution. For
the purposes of this paper we will treat x as given. For typical pa-
rameter values the stationary distribution has no analytical solu-
tion.

2.2. Simulation

It is not difficult to produce an ergodic Markov process suitable
for simulation such that its stationary distribution (i.e., time-
invariant distribution) coincides with the cross-sectional distribu-
tion µ in (2). In essence, we need a method for sampling from the
stochastic kernel Q . The first step is to simulate from the condi-
tional distribution P(φ, ·) = F(· | φ). In particular, we seek a ran-
dom variable U and a function g such that D(g(φ,U)) = F(· | φ)
for allφ ∈ S. (HereD(X) indicates the distribution of random vari-
able X .) This can be achieved via the inverse transform method,
where U is uniform on [0, 1] and g(φ, u) = F−1(u | φ).9 Now con-
sider the process {Φt} defined by

Φt+1 = g(Φt ,Ut+1)1{Φt ≥ x} + Zt+11{Φt < x} (4)
where {(Ut , Zt)} is iidwithD(Zt) = ν andD(Ut) = Uniform[0, 1].
In what follows we call (4) the simulation model.

Lemma 2.1. The simulation model is a Markov process with stochas-
tic kernel Q .

7 F n(· | φ) is the conditional distribution for productivity after n periods, given
current productivity φ.
8 We focus only on normalized measures, since other cases are just scalar

multiples.
9 Here F−1(· | φ) is the generalized inverse of F(·|φ). That is, F−1(u | φ) := inf{z :

F(z | φ) ≥ u}.
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