
A pipelined array architecture for Euclidean distance transformation

and its FPGA implementation

N. Sudha

Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India 600 036

Received 14 October 2003; revised 23 February 2004; accepted 5 October 2004

Available online 13 November 2005

Abstract

The Euclidean Distance Transform (EDT) is an important tool in image analysis and machine vision. This paper provides an area-efficient

hardware solution to the computation of EDT on a binary image. An O(n) hardware algorithm for computing EDT of an n!n image is

presented. A pipelined 2D array architecture for harware implementation is designed. The architecture has a regular structure with locally

connected identical processing elements. Further, pipelining reduces hardware resources. Such an array architecture is easily scalable to

handle images of different sizes and is suitable for implementation on reconfigurable devices like FPGAs. Results of FPGA-based

implementation shows that the hardware can process about 6000 images of size 512!512 per second which is much higher than the video

rate of 30 frames per second.

q 2004 Elsevier B.V. All rights reserved.

Index terms: Euclidean distance transform; Image; Pipelining; FPGA

1. Introduction

Many problems in computer vision require the ability to

extract and process metric and radiometric information that

are intrinsic to images. Radiometric information would

consist of gray-scale information in the form of histograms,

edge and texture data. This paper focuses on metric

information and in particular, that obtained via distance

transforms on images.

A distance transformation converts a binary image

consisting of foreground and background pixels into one

where each pixel has a value equal to its distance to the

nearest background pixel (alternatively, distances could be

to the nearest foreground pixel). Applications of distance

transform are numerous. These include shape analysis of

objects [1], machine vision [2] and image matching [3]. The

types of transforms used generally are city-block distance

transform, chessboard distance transform and Euclidean

distance transform (EDT). Of these, EDT finds widespread

use in view of the natural metric employed.

Considerable research has been done on development of

algorithms for computation of the EDT. Several sequential

[4–7] and parallel [8–11] algorithms are available. Some

work on parallel algorithms targeted to general-purpose

processors is also known [12,13]. The time complexities of

these algorithms for an n!n image on an n!n mesh are

O(n) and O(log2 n). However, the actual implementation is

not given and hence the real-time performance of these

algorithms are not known.

Applications such as tracking of objects in a video

sequence require real-time performance. The rapid growth

in FPGA technology calls for hardware mappable algor-

ithms and cost-effective FPGA-based solutions. Array-type

architectures consisting of locally interconnected identical

processors are most commonly designed to solve imaging

problems in FPGAs. These architectures are easily scalable

to handle different image sizes. The reconfigurability

feature of FPGAs is favourable to such scalable designs.

Further, FPGAs facilitate rapid prototyping of designs.

However, Euclidean distance computation is hard to

decompose into local neighborhood operations because it

involves a nonlinear squaring and square root operations.

Work on custom hardware for EDT is scarce. Ref. [10]

0141-9331/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2004.10.003

Microprocessors and Microsystems 29 (2005) 405–410

www.elsevier.com/locate/micpro

E-mail address: sudha@iitm.ac.in

http://www.elsevier.com/locate/micpro


presents an approach to the computation of EDT based on

the morphological dilation operation. Some pointers to

hardware mapping are provided.

In this paper, a pipelined array architecture is presented

for the computation of EDT. The architecture comprises of a

two-dimensional array of locally interconnected identical

processing elements where each element is a sequential

logic and all elements are operated synchronously. The

computations within each element are with integers. Such a

digital design with no floating point arithmetic is quite

suitable for FPGA implementation. In particular, the idea is

to assign, to each processing element, multiple pixels of the

given binary image. The motivation is to reduce the

hardware (space requirements) while keeping the speed of

operation still at the desirable (real-time) level. Incorpor-

ation of pipelining is not straightforward and requires

handling appropriately the data dependencies in the

architecture.

The design details including the derivations to

facilitate pipelining constitute an important contribution

of this paper. The ideas presented for the case of 4 pixels

per processing element readily extend to the case of

more than 4 pixels per processing element (such as 9, 16

and so on). Results of Xilinx FPGA implementation

suggest that the hardware can process fairly large images

much faster than the video rate.

The organization of the paper is as follows. The next

section gives the hardware mappable algorithm for EDT.

Section 3 describes the pipelined architecture that

implements the algorithm. Section 4 presents the Xilinx

FPGA implementation of the architecture. Finally, Section 5

concludes the paper.

2. Hardware algorithm

In this section, a parallel algorithm which is amenable to

VLSI implementation is presented. The salient feature of the

algorithm is that the computation of EDT involves only

integer arithmetic operations within a small neighborhood

of each pixel and hence it is suitable for mapping onto a

high-speed array architecture.

The algorithm computes distance vector (Dr, Dc) of

pixels where Dr and Dc are the number of rows and

columns by which a pixel is displaced from its nearest

background pixel. The Euclidean distance is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr2CDc2

p
. (Dr, Dc) of background pixels are initialized

to (0,0) and those of foreground pixels are computed

iteratively starting from the pixels nearby background

and moving towards the far away pixels. At any iteration

k, (Dr(p), Dc(p)) of those pixels p whose nearest integer

approximation to Euclidean distance d(p) equals k are

computed. That is, d(p) lies within (kK0.5, kC0.5]. d(p)

is not an integer and hence we shall consider d2(p). d2(p)

lies within (k2Kk, k2Ck] since d2(p) is an integer.

However, d2(p) is quite large in magnitude and it

requires a large storage space in hardware. A new

integer quantity d(p) which is much smaller than d2(p) is

defined as (k2Ck)Kd2(p). d is used for the computation

of (Dr, Dc). It is derived as follows.

d2(p) is derived first and then it is substituted in the

definition for d(p). d2(p) can be derived using the already

computed (Dr, Dc) of eight neighbors pi, iZ1–8,

surrounding p. It is given by min½Dr2
i CDc2

i � where

DriZD(pi) if pi is in the same row of p. Otherwise,

DriZDr(pi)C1. The increment by 1 is due to p being

displaced from pi by one row. Similarly, Dci is given in

terms of Dc(pi). d2(p) can be rewritten as min[d2(pi)C
DRiCDCi] where DRiZ0 if pi is in the same row of p.

Otherwise, DRiZ2Dr(pi)C1. d(p) is now derived as

follows.

dðpÞ Z k2 Ck Kd2ðpÞ

Z max½k2 Ck Kd2ðpiÞKDRi KDCi�

Z max½dðpiÞKDRi KDCi� Z max½di� (1)

d(p)R0 means d(p) lies below kC0.5.

The iterative computation of (Dr, Dc) proceeds as

follows. d of the background pixels are initialized to 0.

At each iteration k, d of foreground pixels whose (Dr,

Dc) are not yet known are computed using already

computed d, Dr and Dc of neighbors. If d(p)R0, then

(Dr(p), Dc(p)) corresponds to (Dri, Dci) where subscript i

pertains to the pixel pi that gives d(p). That is, pi that

satisfies Eq. (1).

Once (Dr, Dc) of a pixel is known, its d should be

updated for at least two successive iterations as it depends

on k. The updating allows use of d for the computation of

(Dr, Dc) of neighbors. dk(p) at iteration k is derived from

dkK1(p) at iteration kK1 as follows.

dkðpÞZk2 CkKd2ðpÞZ2kC½ðkK1Þ2 CðkK1ÞKd2ðpÞ�

Z2kCdkK1ðpÞ ð2Þ

The iterative computation of (Dr, Dc) and d values of pixels

of an image with two background pixels is illustrated in

Fig. 1. The pixels whose values have been computed at each

iteration k are shown in the figure. Consider iteration kZ2. d

of those twelve pixels whose (Dr, Dc) have been computed

at kZ1 are incremented by 2k (i.e. 4). Besides, some new

pixels’ (Dr, Dc) and d are computed. One such pixel is at

(r,c)Z(1,4). Its values are computed as follows. There are

three valid neighbors at (2,3), (2,4) and (2,5). The di values

obtained from these neighbors are K1,2 and K2 and the

maximum corresponds to the pixel at (2,4). (Dr, Dc) is

hence given by (2,0).

To keep track of pixels whose (Dr, Dc) have been

computed, a flag done is assigned to each pixel, whose value

is set to 1 when the transform values of pixels are computed

at any iteration. The algorithm for hardware implementation

is given below.

N. Sudha / Microprocessors and Microsystems 29 (2005) 405–410406



Download	English	Version:

https://daneshyari.com/en/article/9660922

Download	Persian	Version:

https://daneshyari.com/article/9660922

Daneshyari.com

https://daneshyari.com/en/article/9660922
https://daneshyari.com/article/9660922
https://daneshyari.com/

