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a b s t r a c t

Individual disagreements are assumed to be reflected in the preferences. Distance functions, e.g., thewell-
known Kemeny (1959) metric, are used to measure these disagreements. However, a disagreement on
how to rank the top two alternatives may be perceived more (or less) than a disagreement on how to
rank the bottom two alternatives. We propose two conditions on functions which characterize a class of
weighted semi-metric functions. This class of semi-metrics allows to quantify disagreements according
to where they occur in preferences. It turns out one of these functions, ‘‘the path minimizing function’’, is
the only metric which generalizes the Kemeny metric.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In various contexts, the analysis of differences or dissimilari-
ties between opinions is crucial. Consider, for instance, a situation
where like-minded people form clusters, interest groups, or politi-
cal parties to implement their agenda on some institution. Another
example would be situations in which dissimilarities between the
social preference and that of the individuals cause discontent. In
that case the extent of the discontent is very much dependent on
the model of dissimilarity. It is important, thus, to measure how
similar (or dissimilar) two individuals are regarding their prefer-
ences.

Preferences are oftenmodeled as orders/rankings over available
alternatives. To compare two preferences, it is, therefore, plausible
to look at the alternatives which are ranked oppositely. The well-
known Kemeny metric (Kemeny, 1959) is commonly used in that
way. Consider a strict preference a ≻ b ≻ c , which is interpreted
as: a is preferred to b, and b to c , and by transitivity, a to c. The
Kemeny metric between a ≻ b ≻ c and another strict prefer-
ence b ≻ a ≻ c is 1, because the two preferences only disagree
on how to order a and b. However, the Kemeny metric between
a ≻ b ≻ c and a ≻ c ≻ b is also 1 (the disagreement is now
on how to order b and c). Therefore, the dissimilarity between the
former two and the dissimilarity between the latter two are given
identical weights. It is not that difficult though to imagine situa-
tions where a disagreement at the top of a preference leads to a
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larger conflict/dissimilarity than a disagreement at the bottom of
the preferences.

We believe the variation on the dissimilarities caused by
the position of disagreements in preferences might be useful in
many applications. For instance, consider three search engines,
(G)oogle, (Y )ahoo and (B)ing . Given a word search, assume these
engines give a strict ranking of the same millions of alternatives,
i.e., websites that are relevant to the search term. Suppose that G
and Y provide identical rankings in the first hundred websites and
differ completely in the remaining millions of websites. Suppose
also that G differs from B in the ranking of the first hundred
websites but is identical in the remaining millions of websites.
Nevertheless, it is natural to argue that G is closer to Y than it is to
B, even ifG and Y disagree on how to rank the remainingmillions of
alternatives after the first hundred websites. This is because what
apparently matters most for internet users in website rankings
is the first twenty–thirty websites (BBC,1 2006) that are ranked.
Another branch of applications would occur in cases where at least
two individuals need to find consensus by making concessions,
such as in bargaining or collective decision making. The implicit
cost of these concessions, then, might depend on the positions of
the disagreement between the individuals.

A disagreement at the bottom of a ranking might also create
more dissimilarity. For instance, a ranking can be interpreted
as a priority list for a rescue operation during a catastrophic
event, or a priority list of occupations to vaccinate during a
pandemic. Given the limited supply of time/vaccines it is natural

1 http://news.bbc.co.uk/2/hi/technology/4900742.stm.
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that a pair of rankings which disagree at the bottom are more
dissimilar than a pair which disagree at the top. Furthermore, the
variation in dissimilarity may not always follow a monotonically
decreasing pattern in the position of disagreement. In fact, in cases
where certain positions in preferences are critical, the dissimilarity
caused by a change in those positions might be more than changes
in other positions. An example would be the ranking of football
teams in a league, where the last, say 3, teams of the last week’s
ranking are to be relegated to another league. Then, a swap in
the last 3rd and 4th positions might be much more critical, hence
influential in the dissimilarity between two rankings, than a swap
elsewhere. Therefore, it makes sense to assign more dissimilarity
to a change at those critical positions.

In this paper, to model dissimilarity between preferences,
we propose to use certain functions on strict preferences2 in a
similar spirit of the Kemeny metric, i.e., respectful to the number
of disagreements, but also allow variation in the treatment of
different pairs of disagreements. To that end, we distinguish
between metrics and semi-metrics. The latter do not necessarily
satisfy the triangular inequality condition hence allows for more
functions to analyze preferential differences. Although triangular
inequality condition is mathematically very relevant, when it
comes down to the dissimilarity of rankings it may not always be
that realistic. For instance, consider three parties (l)eft, (r)ight and
(c)entre and three voters with preferences respectively: vl = l ≻

c ≻ r , vr = r ≻ c ≻ l, and vc = c ≻ r ≻ l. Note that voters have
single-peaked preferences on the left–right political dimension
with vl denoting a left wing, vr a right wing, and vc a center–right
voter. Triangular inequality imposes that the distance between vl
and vr cannot be more than the sums of distances between vl, vc
and vc , vr . This may not be very realistic since distance between
two extremist at times may surpass the sum of distance between
each extremist and the median voter.

In this paper, we provide two conditions that characterize a
class of semi-metric functions. First one, ‘‘positional neutrality’’
is a neutrality condition towards the position of disagreement
between two adjacent preferences, i.e., preferences which have
only one disagreement. The second one, ‘‘decomposability’’ is
a additivity-like condition which requires that the dissimilarity
between any two preferences can be decomposed into a path of
adjacent preferences between the two. We show some examples
from the class of weighted semi-metric functions and also prove
under which conditions these functions become metrics, i.e., they
also satisfy the triangular inequality condition. We restrict our
attention to strict preferences only and employ some group-
theoretic results.

In Section 2, we introduce the notation and the basic conditions
for semi-metric functions and define the two aforementioned con-
ditions; positional neutrality and decomposability. In Section 3 we
introduce the class of weighted semi-metrics which is character-
ized by these two conditions. Our main result characterizes one
of these weighted functions, the path minimizing function, to be
the only metric regardless of how weights are distributed on the
positions. This result generalizes the Kemenymetric on strict pref-
erences. In Section 4, we discuss some other examples of semi-
metrics: the Kemeny metric, the Lehmer function, the inverse
Lehmer function. We discuss under what type of weight distribu-
tions, these functions become also metrics, i.e., they satisfy the tri-
angular inequality condition. Section 5 concludes the paper with
some possible applications and future research.

2 A strict preference on a set of alternatives is a complete, transitive and
antisymmetric binary relation over that set of alternatives.

2. The model

2.1. Notation

Let A be the set of alternatives with cardinality m ≥ 3. Strict
preferences are modeled by linear orders3 over A, and the set of
all linear orders is denoted by L. Given R ∈ L, aRb is interpreted
as a is strictly preferred to b, i.e., the ordered pair (a, b) ∈ R. We
sometimes write R = · · · a · · · b · · · if aRb, and R = · · · ab · · · if aRb
and there exists no c ∈ A \ {a, b} such that aRc and cRb, i.e., a and
b are adjacent in R. Given any a ∈ A, UC(a, R) = {b ∈ A | bRa}
is the ‘‘upper contour set’’ of a in R, i.e., the set of alternatives
that are ranked above a in the linear order R. Correspondingly,
LC(a, R) = {b ∈ A | aRb} is the ‘‘lower contour set’’ of a in R.

For l = 1, 2, . . . ,m, R(l) denotes the alternative in the lth
position in R. For some subset B ⊆ A, R|B denotes the preference
reduced to B, i.e., R|B = R ∩ (B × B). Given any two linear orders
R, R′

∈ L, the set difference R \ R′ denotes the set of ordered pairs
that exist in R and not in R′, i.e., {(x, y) ∈ A×A | xRy and yR′x}. Two
linear orders (R, R′) ∈ L2 form an elementary change4 in position k
whenever R(k) = R′(k+1), R′(k) = R(k+1) and for all t ∉ {k, k+

1}, R(t) = R′(t), i.e. |R\R′
| = 1. Given any twodistinct linear orders

R, R′
∈ L, a vector of linear orders ρ = (R0, R1, . . . , Rk) is called a

path between R and R′ if k = |R \R′
|, R0 = R, Rk = R′ and for all i =

1, 2, . . . k, (Ri−1, Ri) forms an elementary change. For the special
case where R = R′, we denote the unique path as ρ = (R, R).

A bijection π : {1, 2, . . . ,m} → {1, 2, . . . ,m} is called a per-
mutation and the set of all permutations is denoted by Π . We use
π(R) (orπ ·R) to denote the permutation of the linear order R byπ ,
i.e., π(R) = R′ if and only if R(i) = R′(π(i)) for all i = 1, 2, . . . ,m.
Given R, R′

∈ L, a permutation π ∈ Π is called the corresponding
permutation5 for R, R′, if π(R) = R′. We denote the conjugate of a
permutation π by π̃ ∈ Π , i.e., π̃(R′) = R if and only if π(R) = R′.
A permutation that swaps the kth alternative of a linear order with
(k + 1)th is called an elementary permutation and is denoted by
σk. Hence, σk is the corresponding permutation for any R, R′

∈ L
that form an elementary change in position k. The set of all elemen-
tary permutations is denoted by S = {σ1, σ2, . . . , σm−1} ⊆ Π . The
identity permutation is denoted by σ0.

Note that the set of all permutations Π over the set of
alternatives A forms a symmetric group (also known as a
permutation group)with the group operator ‘‘·’’, which implies any
permutationπ ∈ Π can be obtained by composition of some other
permutations with the group operator, e.g.,π ′′

·π ′
·R = π ·R refers

to the situation where R is first permuted via π ′ and then π ′′, and
π ′′

· π ′
= π . Note, however, that unless m ≤ 2, the group fails

commutativeness, e.g., for R = abc; note that σ1 · σ2 · R = cab
whereas σ2 · σ1 · R = bca.

In this paper, we will especially make use of compositions of
elementary permutations in S. Since Π is a permutation group it
has S, as the generator set,whichmeans every permutationπ ∈ Π ,
including the identity permutation σ0, can be expressed by some
composition of elements of S. Given R, R′

∈ L, and a corresponding
permutation π ∈ Π , let I(π) denote the size of π , which is
the number of minimal inversions required to obtain R′ from R
by elementary permutations. Note that as π is the corresponding
permutation for R, R′, we have that I(π) = |R \ R′

|. Note also
that for the identity permutation, we have I(σ0) = 0. Next we
define compositions of a permutations via elementary/identity
permutations.

3 Complete, transitive and antisymmetric binary relations.
4 We omit the parenthesis whenever it is clear and write R, R′ instead.
5 We omit this expression whenever it is clear which permutation we employ.
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