ELSEVIER

Available online at www.sciencedirect.com

ELSEVIER Computers and Mathematics with Applications 50 (2005) 1725–1754

www.elsevier.com/locate/camwa

Constant-Sign Periodic and Almost Periodic Solutions of a System of Difference Equations

R. P. AGARWAL Department of Mathematical Sciences Florida Institute of Technology Melbourne, FL 32901-6975, U.S.A.

agarwal@fit.edu

D. O'REGAN Department of Mathematics National University of Ireland Galway, Ireland donal.oregan@nuigalway.ie

PATRICIA J. Y. WONG School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798, Singapore ejywong@ntu.edu.sg

(Received February 2005; accepted March 2005)

Abstract—We consider the following system of difference equations,

$$u_i(k) = \sum_{\ell \in I} g_i(k,\ell) f(\ell, u_1(\ell), u_2(\ell), \dots, u_n(\ell)), \qquad k \in I, \quad 1 \le i \le n,$$

where I is a subset of \mathbb{Z} . Our aim is to establish criteria such that the above system has a constantsign periodic and almost periodic solution (u_1, u_2, \ldots, u_n) . The above problem is also extended to that on \mathbb{Z} ,

$$u_i(k) = \sum_{\ell \in \mathbb{Z}} g_i(k,\ell) f_i(\ell, u_1(\ell), u_2(\ell), \dots, u_n(\ell)), \qquad k \in \mathbb{Z}, \quad 1 \le i \le n.$$

© 2005 Elsevier Ltd. All rights reserved.

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{E} X$

^{0898-1221/05/\$} $\,$ - see front matter \odot 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.camwa.2005.03.020

R. P. AGARWAL et al.

1. INTRODUCTION

In this paper, we shall consider two systems of difference equations. The first is on $I \ (\subseteq \mathbb{Z})$,

$$u_i(k) = \sum_{\ell \in I} g_i(k,\ell) f(\ell, u_1(\ell), u_2(\ell), \dots, u_n(\ell)), \qquad k \in I, \quad 1 \le i \le n.$$
(1.1)

The second is on \mathbb{Z} ,

$$u_i(k) = \sum_{\ell \in \mathbb{Z}} g_i(k,\ell) f_i(\ell, u_1(\ell), u_2(\ell), \dots, u_n(\ell)), \qquad k \in \mathbb{Z}, \quad 1 \le i \le n.$$
(1.2)

Throughout we shall denote $u = (u_1, u_2, \ldots, u_n)$. Let $\theta \in \{1, -1\}$ be fixed. We say that u is a solution of *constant sign* of (1.1) if for each $1 \leq i \leq n$, we have $\theta u_i(k) \geq 0$, for $k \in I$. Let ω be a positive integer and suppose I contains at least one discrete interval with ω points, which we denote by I_{ω} . A solution u of (1.1) is said to be ω -periodic if u_i is ω -periodic for each $1 \leq i \leq n$. More precisely, we mean $u \in (A_{\omega}(I))^n = A_{\omega}(I) \times A_{\omega}(I) \times \cdots \times A_{\omega}(I)$ (n times), where

$$A_{\omega}(I) = \{y \in \mathrm{BC}(I) \mid y(k) = y(k + \omega), \text{ for all } k, \text{ such that } k + \omega \in I\}$$

and BC(I) is the space of bounded and continuous functions on I (discrete topology) with values in \mathbb{R} . Of course since I is a discrete space then any mapping from I to \mathbb{R} is continuous. Clearly, for $y \in A_{\omega}(I)$, the norm of y is given by

$$|y|_{\omega} = \sup_{k \in I} |y(k)| = \max_{k \in I_{\omega}} |y(k)|.$$

The norm of $y = (y_1, y_2, \ldots, y_n) \in (A_{\omega}(I))^n$ then is given by

$$|y|_{\omega} = \max_{1 \le i \le n} |y_i|_{\omega}.$$

For *I*, an infinite subset of \mathbb{Z} , we say a solution of (1.1) is *almost periodic* if u_i is almost periodic for each $1 \leq i \leq n$. To be exact, we mean $u \in (\operatorname{AP}(I))^n$ where $\operatorname{AP}(I)$ is the space of continuous almost periodic functions on *I* with values in \mathbb{R} . A function is said to be *almost periodic* (in the Bohr sense) if for any $\epsilon > 0$, there exists an integer $l(\epsilon) > 0$ such that any discrete subinterval of *I* with $l(\epsilon)$ points contains an integer τ , such that

$$|x(k+\tau)-x(k)| < \epsilon$$
, for all k, such that $k+\tau \in I$.

Almost periodic functions are bounded (the argument is as in [1, p. 283]). For $y \in AP(I)$, the norm of y is given by

$$|y|_0 = \sup_{k \in \mathbb{Z}} |y(k)|.$$

The norm of $y = (y_1, y_2, \dots, y_n) \in (AP(I))^n$ is then given by

$$|y|_0 = \max_{1 \le i \le n} |y_i|_0.$$

It is clear that $A_{\omega}(I) \subset AP(I)$.

The definitions of *periodic* as well as *almost periodic* solutions of (1.2) are similar to those of (1.1), with I replaced by Z. A constant-sign solution u of (1.2) is such that for each $1 \le i \le n$, $\theta_i u_i(k) \ge 0$, for $k \in \mathbb{Z}$, where $\theta_i \in \{1, -1\}$ is fixed.

Much work has been carried out on the existence of *positive* solutions of the difference equations (1.1),(1.2) and its continuous analog when n = 1. The reader is referred to [2–6]. The generalization to systems of difference equations and the existence of constant-sign solutions have been

1726

Download English Version:

https://daneshyari.com/en/article/9662269

Download Persian Version:

https://daneshyari.com/article/9662269

Daneshyari.com