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A b s t r a c t - - I n  X-ray computed tomography (CT), the ideal ramp filter is a generalized function 
defined by the inverse Fourier transform. Similar to Dirac's discussion on the delta function, we 
present an intuitive discussion on the ideal ramp filter. With this concise discussion, one obtains 
a better understanding of the filter backprojection algorithm (FBP) and can easily construct new 
practical filters. (~) 2005 Elsevier Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

X-ray computed tomography (CT) has undergone tremendous advancement over the last few 
years. The most popular approach for image reconstruction remains the filtered back-projection 
(FBP) [1,2] because of its computational advantages. Theoretically, each parallel-beam projec- 
tion, p(t, 0), is convolved with the ideal ramp filter, h(t), to obtain a filtered projection, 

15 (t, 0) = p (t, 0) • h (t), (1) 

where h(t) is a generalized function defined by the inverse Fourier transform, 

h (t) = f : :  I~l exp (/2,~t) d.~. (2) 
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In literature, there coexist two inconsistent ways to deal with generalized functions, either 
mathematically nonrigorous but intuitive, or mathematically rigorous but abstruse [3]. For in- 
stance, in dealing with the Dirac delta function, physicists [4] and engineers [5] treat  it as a point 
charge at the origin or an impulse at a reference moment, denoted by 

x 0, 
c~, x = 0, (3) 

(x)  = (4) dx 1. 
O O  

Mathematicians, on the other hand, think it is logically unacceptable that  a function is zero 
almost everywhere but has area of unity. Therefore, they rigorously define Dirac delta as a 
continuous linear functional mapping an infinitely differentiable compact support function ~(x) 
to the number ~(0) [3,6-8], denoted by 

Certainly we have no reason to reject the mathematical rigorousness, but we really appreciate 
the intuitive definition and properties of Dirac delta, which brings us a "much better  impres- 
sion" [3, Line 13, p. 11] and enables us to easily solve real problems in many fields, even in 

theoretical physics [4]. 
Although the theory on the singular generalized functions can be found in many mathematical 

monographs [3,6-8], CT engineers wish an intuitive discussion on the ideal ramp filter to better 
understand CT algorithm and design various filters. In this paper, we try to give a self-contained 
intuitive discussion on the expression and properties of the ideal ramp filter and point out how 
to reconstruct new practical filters. Elementary calculus is enough to understand this paper. 
Readers interested in mathematical  rigorousness are referred to suitable reference at the end of 
the paper. 

2. A N  I N T U I T I V E  E X P R E S S I O N  O F  I D E A L  R A M P  F I L T E R  

Similar to Dirac's definition for delta function, in this section, we will derive an intuitive 
definition for the ideal ramp filter, which is the base for the following sections. 
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Figure 1. Illustration of (a) c~(x), and (b) its derivative function fl(x). 
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