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Abstract

The tolerance approach to sensitivity analysis in linear programming aims at finding a unique numerical value

(tolerance) representing the maximum absolute perturbation which can be applied simultaneously and independently

on each right-hand-side or objective coefficient without affecting the optimality of the given basis. Some extensions have

been proposed in the literature, which allow for individual tolerances for each coefficient, thus enlarging the tolerance

region. In this paper we review the main results concerning the approach, giving new and simpler proofs, and we

propose an efficient geometric algorithm returning a tolerance region that is maximal with respect to inclusion. We

compare our method with the existing ones on two examples, showing how a priori information can be naturally

exploited by our algorithm to further enlarge individual tolerances.
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1. Introduction

In practical applications of optimization models, data may be either imprecise estimates of real values or
functions of parameters under the control of the decision maker. This fact confers great relevance to the

analysis of the sensitivity of the optimal solutions and the optimal objective value to data perturbations.

A traditional approach to sensitivity analysis in linear programming is to consider the stability of a given

optimal basis with respect to perturbations of the right-hand-side (RHS) and the objective (OBJ) vectors,

the so-called RIM vectors. This is a well-established field, but a practical interpretation of such stability

conditions by decision-makers is not straightforward. Indeed, from a theoretical point of view, it is easy to

describe exactly in terms of linear inequalities a critical region defined as the set of all RIM vector per-

turbations which do not affect the optimality of the current basis [8]. From a practical point of view, the
description of such a multidimensional set may be difficult to interpret. This drawback may be overcome by
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restricting attention to variations of a single entry of the RIM vectors at a time. In other words, for every
coefficient, we look for the critical interval where such a coefficient may vary without affecting the opti-

mality of the current basis, while all other coefficients are fixed to their original values. Such an approach is

known as ordinary sensitivity analysis and it is usually implemented in commercial packages for linear

optimization. A major deficiency of ordinary sensitivity analysis is that the obtained critical intervals are

not valid when different coefficients vary simultaneously. There are two approaches to sensitivity analysis

which try to surmount this deficiency: the 100% rule by S.P. Bradley, A.C. Hax and T.L. Magnanti, and the

tolerance approach by R.E. Wendell.

The 100% rule [1] exploits two facts: (i) the intervals obtained from ordinary sensitivity analysis are
subsets of the critical region, and (ii) the critical region is convex. Hence, any convex combination of points

contained in critical intervals is contained in the critical region and thus the corresponding perturbation

preserves the optimality of the current basis while allowing simultaneous variations on the RIM coeffi-

cients. Unfortunately, the 100% rule obtains a set which is again difficult to interpret.

The tolerance approach [10] focuses on simultaneous and independent variations of the RIM coeffi-

cients. More precisely, the tolerance approach returns a unique numerical value (tolerance) representing the

maximum absolute perturbation which can be applied simultaneously and independently on each RIM

coefficient without affecting the optimality of the given basis. In this sense, the tolerance approach tries to
resolve the trade-off between allowing multidimensional perturbations and giving clear results. The original

set of allowed perturbations has been extended in two ways: (i) by allowing individual tolerances for each

coefficient [14,11,7], and (ii) by using a priori information on the allowed coefficient variation intervals,

through the application of a suitable algorithm [9]. For a detailed survey on the tolerance approach and its

application to different optimization models see [12]. See also [13] for a characterization of the potential loss

of optimality for variations of the cost coefficients beyond the maximum tolerance.

In this paper, we review the tolerance approach for general linear programming models giving new and

simpler proofs, using only the fundamentals of linear algebra and linear optimization. Moreover, we
suggest a geometric algorithm which fits in a unique framework the original approach and the two

extensions (i) and (ii) above, and returns regions of allowed perturbation containing those obtained in

[9,11,14]. Our work originates from the observation that the original tolerance approach and its sub-

sequent extensions may give unsatisfactory results on very simple cases, as witnessed by the following

example.

Consider the problem:

max x1 þ x2
subject to x1 � x2 þ x3 ¼ �1;

x1 þ x2 þ x4 ¼ 3;

x1; x2; x3; x4 P 0;

ð1Þ

where x1 and x2 correspond to an optimal basis. This basis remains optimal for all RHS vectors ðu1; u2ÞT
such that u1 þ u2 P 0 and �u1 þ u2 P 0 (see Section 2). Assume that we are interested in simultaneous and

independent additive perturbations around the given RHS vector ð�1; 3ÞT. Then the original Wendell’s

approach [10] returns a unique allowable perturbation interval for all RHS coefficients, namely ½�1;þ1�;
the corresponding set of allowable RHS vectors is depicted in Fig. 1(a) (see Section 3, Theorem 1).

Moreover, the extension proposed in [14,11] returns a distinct allowable perturbation interval for each RHS
coefficient, namely ½�1; 2� for the first coefficient and ½�1;þ1� for the second one, resulting in the larger

region depicted in Fig. 1(b) (see Section 3, Theorem 2). However, a graphical inspection reveals that the

even larger region depicted in Fig. 1(c) may be allowed.

As a matter of fact, we will show that our algorithm applied to the above example returns exactly the

region depicted in Fig. 1(c). In general, we prove that the tolerance regions we get are maximal with respect
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