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Abstract

The inertia-controlling strategy in active set methods consists of choosing the working set so that the reduced

Hessian never has more than one non-positive eigenvalue. Usually, this strategy has been implemented by permitting to

delete constraints only at stationary points. In a general inertia-controlling method constraints may be deleted at non-

stationary points. A null-space method for dense quadratic programming is presented, in which only one triangular

system has to be solved at each iteration for computing the search direction. This method takes advantage of previously

developed recurrence formulas for updating the search direction when the working set changes.
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1. Introduction

The general quadratic programming problem is

to find a local optimum of a quadratic objective

function subject to linear constraints on the vari-

ables. Many mathematically equivalent formula-

tions are possible though, to simplify the notation,

the following problem will be considered:

min ð1=2Þx0Bx þ c0x;

s:t: AxP b;

where the Hessian matrix B is a symmetric n � n
matrix, and A is a m � n matrix. Any point satis-

fying AxP b is said to be feasible. The gradient of

the objective function at x is gðxÞ ¼ c þ Bx.
Many algorithms have been proposed for solv-

ing the quadratic programming problem, as inte-

rior-point methods (e.g., [2,5,20]), exterior-point

methods (e.g., [1,3]), via convex quadratic splines

(e.g., [16]) or piecewise quadratic functions (e.g.,

[17,18]), and DC algorithms (e.g., [14,15]), but

active set algorithms (e.g., [4,6–13]) are used in

many of today�s solvers for quadratic program-
ming programs (see [19]). Inertia-controlling qua-

dratic programming (ICQP) methods belong to

the class of active set methods for solving the QP

problem. At each iteration, an active set algorithm

determines the search direction and multiplier

estimates using a subset of the constraints, named
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the working set. The inertia-controlling strategy
consists of choosing the working set at each iter-

ation so that the reduced Hessian never has more

than one non-positive eigenvalue. Almost all ICQP

methods permit to delete constraints only at sta-

tionary points, as the methods of Fletcher [6], Gill

and Murray [8], Gill et al. [9,10] and Gould [13].

However, if the inertia-controlling strategy is used,

a constraint can be safely deleted from the working
set whenever the reduced Hessian is positive defi-

nite (see, e.g., Gill et al. [10]). An ICQP method in

which constraints can be deleted at non-stationary

points is called a general ICQP method.

G�omez and Pedreira [12] analyze a generic

ICQP method that uses a general inertia-control-

ling strategy. They show how a search direction

with suitable properties can be determined when
the reduced Hessian is positive definite, positive

semidefinite and singular, and non-positive semi-

definite, and derive recurrence formulas to update

the search direction when the working set changes.

These recurrence relations can be used to develop

specific ICQP methods and, in particular, G�omez

and Pedreira [12] point out that the methods pre-

sented in Gould [13] and Gill et al. [9] for sparse
quadratic programming could be readily modified

for making use of a general inertia-controlling

strategy. However, G�omez and Pedreira [12] do

not discuss how these recurrence formulas could

be used to develop specific methods for dense QP.

When the standard inertia-controlling strategy is

used, Gill and Murray [8] and Gill et al. [10] de-

vised null-space methods for dense QP in which
only one triangular system has to be solved at each

iteration for determining the search direction.

However, this important feature would be lost

with a naive adaptation of these methods for using

a general inertia-controlling strategy. This paper

presents a null-space method for solving dense QP

problems which also allows to compute the search

direction by solving only one triangular system at
each iteration when a general inertia-controlling

strategy is used. The method proposed takes

advantage of the recurrence formulas developed

by G�omez and Pedreira [12].

The structure of this work is as follows. Section

2 summarizes how the search direction is deter-

mined in a general ICQP method. Section 3 pre-

sents a null-space method for computing the search
direction in the general ICQP method for dense

QP. Brief conclusions are presented in Section 4.

2. The search direction in a general ICQP method

In this paper, we shall assume familiarity with

the ICQP method (see, e.g., Gill et al. [10]). First,
some notation is introduced.

A constraint is said to be active at a point x if it

is satisfied as an equality at that point; inactive if it

is satisfied as a strict inequality at that point;

violated otherwise. A working set at x is a desig-

nated subset of indices of linearly independent

constraints active at x. Let A denote a t � n matrix,

t6 n, with full row rank whose rows are the nor-
mals to the constraints included in the working set.

We also refer to the matrix A as the working set.

We say that the n � ðn � tÞ matrix Z is a null-space

basis for A if its columns form a basis of the null-

space of A; i.e., AZ ¼ 0 and rankðA0jZÞ ¼ n. The
matrix Z 0BZ is called the reduced Hessian of B with

respect to the working set A or, simply, the reduced

Hessian. An iterate x is said to be standard if Z 0BZ
is positive definite; minimizer if it is a standard

stationary point; and intermediate if it is not a

minimizer.

Let a and A be the normal to the last deleted

constraint and the current working set, respec-

tively. Let us consider the following systems:

Bq þ A0k ¼ g; Aq ¼ 0; ð1Þ

Bp þ A0vA þ ava ¼ 0; Ap ¼ 0; a0p ¼ 1; ð2Þ

and let v0 ¼ ðv0A; vaÞ. If the algorithm does not
terminate at the current iterate because it does

not satisfy the second order necessary Karush–

Kuhn–Tucker (KKT) conditions, a suitable search

direction, d, may be determined as follows (see

G�omez and Pedreira [12, Section 4.2]). If the re-

duced Hessian is positive definite, then d ¼ �q;
if the reduced Hessian is positive semidefinite

and singular, then

d ¼
�sgnðp0gÞp if p0g 6¼ 0;
�p if Z 0g ¼ 0;
�q if Z 0g 6¼ 0 and p0g ¼ 0;

8<: ð3Þ
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