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a b s t r a c t

The paper proposes a new concept of solution for TU games, calledmulticoalitional solution, whichmakes
sense in the context of production games, that is, where v(S) is the production or income per unit of
time. By contrast to classical solutions where elements of the solution are payoff vectors, multicoalitional
solutions give in addition an allocation time to each coalition, which permits to realize the payoff vector.
We give two instances of such solutions, called the d-multicoalitional core and the c-multicoalitional
core, and both arise as the strong Nash equilibrium of two games, where in the first utility per active
unit of time is maximized, while in the second it is the utility per total unit of time. We show that the
d-core (or aspiration core) of Benett, and the c-core of Guesnerie and Oddou are strongly related to the
d-multicoalitional and c-multicoalitional cores, respectively, and that the latter ones can be seen as an
implementation of the former ones in a noncooperative framework.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Finding the solution of a cooperative game with transferable
utility, that is, how to share among the players the benefit of coop-
eration (whatwe call here a distribution), is awell-known problem
in game theory which has been studied in depth from a long time
ago. One of the most prominent solutions is the core (Gillies, 1953,
1959), which is the set of efficient and coalitionally rational distri-
butions (i.e., the payoff given to a coalition is at least equal to what
the coalition could have achieved by itself; for applications of the
core in economy, see, e.g., Trockel, 2005; Shitovitz, 1997; Flam and
Koutsougeras, 2010).

Although quite attractive on a rational point of view since it
ensures stability of the solution, the core does not contain any
allocation in many cases. It is however possible to extend the defi-
nition of the core, so as to keep coalitional rationality while ensur-
ing its nonemptiness. The k-additive core, proposed by Grabisch
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and Miranda (2008) and later developed by the authors (Gonzalez
and Grabisch, 2015), achieves this goal by allowing distributions
to be defined not only on individual players but also on coalitions
up to a size k. The aim of this paper is to propose another way to
generalize the core, by focusing on linear production games and
introducing time into the picture.

We consider a linear production game v, that is, for any coalition
of players S, v(S) represents the production per unit of time of the
coalition S, ormore directly, the income per unit of time, which has
to be redistributed among the players. The classical notion of core
is based on the simplistic assumption that the best arrangement
of the players (in terms of maximizing the income) is to put them
all together, in other words, the grand coalition N forms and v(N)

is the income per unit of time to be redistributed. Alternatively,
the c-core (Guesnerie and Oddou, 1979; Sun et al., 2008), or
coalition structure core (Kóczy and Lauwers, 2004) supposes that
the grand coalition is not necessarily the best arrangement, but
considers every possible partition of the grand coalition and takes
the partition which achieves the maximum.

Yet this generalization is not powerful enough since the
c-core is sometimes empty. Generalizing partitions to balanced
collections permits to ensure nonemptiness in any case, and this
gives rise to the d-core (Albers, 1979), or aspiration core (Bennett,
1983; Cross, 1967).
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Let us elaborate on balanced collections and their interpreta-
tion. It is common in the literature to see a balancing weight of a
coalition in a balanced collection as the fraction of time this coali-
tion is active (see, e.g., Peleg and Sudhölter, 2003). Then it is usually
considered that a coalition being active during a given fraction of
time receives the corresponding fraction of its income (Aumann,
1989). With this view in mind, a feasible payoff corresponds to the
maximum incomeplayers can generate if each of themdevotes one
unit of time among the coalitions to which they belong: This set is
equal to the set of aspiration feasible payoffs. Then the theorem of
Bondareva–Shapley (Bondareva, 1963; Shapley, 1967) ensures that
there exists a way to share time among coalitions, which builds
payoff satisfying coalitional rationality. Thus, the aspiration core
seems to be a suitable way to describe how coalitions must form if
each player has one unit of time, and how long each coalitionmust
be active.

However, the d-core does not explain which coalitions form
and in which time frame. Cross (1967) informally describes the
d-core as a set of stable coalitions with their associated payoffs.
The B-core and the M-core proposed by Cesco (2012) are closely
related to or constitute a continuation of the paper of Cross, by
considering the set of coalitions which lead to a payoff into the
d-core. Under this view, a cooperative TU-game solution should be
not only composed of the payoffs given to each player but should
also comprise the time allotted to each coalition which permits to
achieve these payoffs.

A second major concern is that the ‘‘value’’ or ‘‘utility’’ of time
is ignored. Even if each player is active during exactly one unit of
time, under the natural assumption that a player cannot be active
in two different coalitions at the same time, the implementation of
the solution may require a total amount of time greater than one
unit: Imagine a situation, like the one described by the gamebelow,
with three players where reaching the payoff given by the d-core
needs an allocation equals to one half unit of time for every pair of
players.1 It follows that any implementation of this situation needs
a minimum of 1.5 units of time. The question is then: is the player
concerned with only the time he is active, or by the total duration
of the process? In the former case, since the time of activity of each
player is 1 by definition, this amounts to consider that players are
concernedwith the income per unit of time. Again, the d-core lacks
precision in describing a solution.

In order to overcome these drawbacks,wepropose a completely
different approach to the problem, having its root in noncoop-
erative game theory: We suppose that each player proposes the
formation of a coalition for a chosen amount of time and claims a
payoff for his participation in each coalitionwhich is formed,2 each
of these proposals being seen as a strategy.Moreover, a utility func-
tion is defined over the set of strategies. The notion of Strong Nash
equilibrium (Aumann, 1959) seems to be the adequate notion here,
since it ensures stability of any coalition by preventing any coali-
tional deviation. Then, a solution in our framework is precisely the
set of undominated strategies (in the sense of strong Nash equilib-
rium).We emphasize the fact that, in our framework, each element
of the solution is a pair (x, α), where x is a payoff vector, and α is a
time allocation for every coalition. This constitutes to our opinion
an innovation since, up to our knowledge, no former work explic-
itly proposes a solution under this form. We call multicoalitional
solution such kind of solution.

1 Such a situation is described with the island desert story in the introduction of
Garratt and Qin (2000).
2 A similar game is proposed by Bejan and Gómez (2012a). In their paper, agents

have to share one unit of time among the set of coalitions to which they belong. The
game leads to a strong Nash implementation of the d-core (see Proposition 6).

We propose two different types of utility functions, leading to
two kinds of strong Nash equilibria. The first one is the utility per
active unit of time, and leads to the maximization of the hourly
wage.We call d-multicoalitional core the set of such equilibria, and
we show that this set is never empty, and that its elements satisfy
nonnegativity, coalitional rationality and a notion of efficiency
close to the one of the d-core (Theorem 3). We show the exact
relation between the d-core and the d-multicoalitional core: in
short, vectors of utility of strategies in the d-multicoalitional core
are elements of the d-core (Proposition 6) when each player play
the same amount of time. The second type of utility function is
the utility per total unit of time, and leads to the maximization of
the total income. We prove that any strong Nash equilibrium of
this type can be turned into a strategy which is also a strong Nash
equilibrium of the first type (Proposition 8). Therefore, we define
the c-multicoalitional core as the set of strategies which are strong
Nash equilibria for both problems. They are nonempty as soon as
the c-core is not empty, moreover, a relation between the c-core
and the c-multicoalitional core is established (Theorem 4).

The paper is organized as follows. Section 1 introduces the basic
definitions and notation. Section 2 introduces time allocations
for coalitions and timetables, that is, how to organize coalition
formation so that no conflict occurs, as well as the notion of
minimal duration for timetables. Section 3 presents the model
with a utility corresponding to an hourly wage and proves the
existence of strong Nash equilibria defining the d-multicoalitional
core which we characterize. Section 4 gives a simple motivating
example proving that our framework is expendable to games with
unfeasible coalitions. Section 5 studies the existence of strongNash
equilibria with a utility corresponding to a utility per hour lived
and defines the c-multicoalitional core which we characterize.

2. Notation and basic concepts

Let N denote a fixed finite nonempty set with n members, who
will be called agents or players. Coalitions of players are nonempty
subsets of N , denoted by capital letters S, T , and so on. Whenever
possible, we will omit braces for singletons and pairs, denoting
{i}, {i, j} by i, ij respectively, in order to avoid a heavy notation.
We denote by Π(N) the set of partitions of N . A transferable
utility (TU) game on N is a pair (N, v) where v is a mapping v :

2N
→ R satisfying v(∅) = 0. We will denote by G(N) the set of

mappings v over N such that (N, v) is a TU game. For any coalition
S, v(S) represents the worth of S, i.e., what coalition S could earn
regardless of other players. A payoff vector is a vector x ∈ Rn that
assigns to agent i the payoff xi. For any coalition T ⊂ N , we denote
by vT the restriction of v to 2T . Given x ∈ Rn, and S ⊆ N , denote
by x(S) the sum


i∈S xi with the convention that x(∅) = 0. A

nonempty collection B ⊆ 2N is called balanced (over N) if positive
numbers δS, S ∈ B, exist such that:
S∈B

δSχ
S

= χN ,

where χ S is the characteristic vector of S given by χ S
i = 1 if

i ∈ S and 0 otherwise. The collection (δS)S∈B is called a system of
balancing weights. We say that (B, (δS)S∈B) is a balanced system if
B is balanced and (δS)S∈B is a corresponding system of balancing
weights. A balanced collection isminimal if no subcollection of it is
balanced. It is well known that a balanced collection is minimal if
and only if there is a unique system of balancing weights.

Let v ∈ G(N). An allocation is said to be coalitionally ra-
tional if for each coalition S we have x(S) ≥ v(S). A core-
solution collects coalitionally rational allocations that meet a
feasibility condition. Different feasibility conditions define dif-
ferent core-solutions: the core (resp., c-core, and the d-core)
collects those coalitionally rational allocations that satisfy
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