
Journal of Mathematical Economics ( ) –

Contents lists available at ScienceDirect

Journal of Mathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

Evolutionary stability of prospect theory preferences
Marc Oliver Rieger ∗,1

University Trier, FB IV, 54286 Trier, Germany

a r t i c l e i n f o

Article history:
Received 18 February 2011
Received in revised form
2 November 2013
Accepted 12 November 2013
Available online xxxx

Keywords:
Prospect theory
Cumulative prospect theory
Probability weighting
Nash equilibria
Evolutionary stability
War of attrition

a b s t r a c t

We demonstrate that in simple 2 × 2 games (cumulative) prospect theory preferences can be
(semi-)evolutionarily stable, in particular, a population of players with prospect theory preferences is
stable against more rational players, i.e. players with a smaller degree of probability weighting. We also
show that in a typical game with infinitely many strategies, the ‘‘war of attrition’’, probability weighting
is (semi-)evolutionarily stable. Finally, we generalize to other notions of stability. Our results may help
to explain why probability weighting is generally observed in humans, although it is not optimal in usual
decision problems.

© 2013 Published by Elsevier B.V.

1. Introduction

We study the influence of prospect theory preferences on
the outcome of two player games. We focus on the effect of
probability weighting on the probabilities for mixed strategies.
A priori one might assume that probability weighting reduces
the (rational) payoffs2 a player receives in a game, since it leads
to irrational decisions. In this article, however, we demonstrate
that there are many situations where probability weighting of the
players is evolutionarily stable, in particular in a class of simple
2 × 2 games related to matching pennies games which we call
social control games (see Sections 2.1 and 2.2) and in the ‘‘war
of attrition’’ (Section 2.3). We generalize these results also to
continuous stability and evolutionary robustness (Section 2.4).

We suggest that our results provide a possible explanation for
the ‘‘probability weighting puzzle’’, i.e. the question why humans
tend to overweight small probabilities, given that this leads to
suboptimal decisions (as compared to the expected utility bench-
mark): when considering interactions between individuals, the
seemingly irrational probability weighting can become advanta-
geous and evolutionarily stable. Since humans do not only face
simple (single person) decision problems, but manifold interac-
tions with others, on average a neutral probability weighting is
usually not optimal (Section 3).
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1 Most parts of this paper were written while the author was working at the
Institute of Mathematical Economics of the University of Bielefeld.
2 Based on linear probability weighting according to subjective expected utility

theory.

1.1. Expected utility theory and prospect theory

Since its origin (v. Neumann, 1928; von Neumann and Mor-
genstern, 1944) game theory has been closely connected to the
expected utility theory. Expected utility theory can be derived
from a set of axioms on decisions between lotteries (i.e. risky pay-
offs): completeness, transitivity, independence and continuity. Of-
ten these axioms are defined as conditions for rationality, although
other definitions for rationality exist. (Arrow, 1950, e.g., implic-
itly considers decision makers as rational if they only satisfy the
first two of these axioms.) Throughout this paper we stick to the
stronger requirement following von Neumann and Morgenstern
and therefore refer to violations of one of these axioms as ‘‘irra-
tional behavior’’.

Such deviations exist — not only as unsystematic errors,
but indeed as systematic biases. Recent decades have seen an
enormous progress towards understanding and modeling of these
biases. One of the most prominent theories that has been designed
to describe such (aswewould call it) irrational behavior is prospect
theory, introduced by Kahneman and Tversky (1979) and Tversky
and Kahneman (1992), for which Daniel Kahneman has been
awarded with the Nobel Prize for economics in 2002.

Since prospect theory is arguably the most influential theory
for behavioral decisions under risk, we focus in this article on this
theory.3

Prospect theory is a modification of classical expected utility
theory that deviates in three important points:

3 There are other relatedmodels that we could treat in a similar way, particularly
theories using the Choquet integral, see Gilboa and Schmeidler (1992) and
Schmeidler (1989).
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1. while the expected utility theory evaluates the final wealth,
prospect theory evaluates outcomes with respect to a reference
point (often, but not always, the status quo). These gains and
losses are referred to as prospects;

2. losses loom larger than gains: the marginal utility in losses is
larger than in gains, i.e. the utility function as a ‘‘kink’’ at the
reference point;

3. small probabilities are overweighted and other probabilities are
underweighted.

The first two modifications can be implemented by using an
inverse S-shaped utility function (called value function) which is
convex in losses and concave in gains with larger derivative in
losses then in gains. In this article, however, we will concentrate
on the third feature. It can be implemented by weighting the
probability distribution by an S-shaped function, the so-called
probability weighting function w. Tversky and Kahneman (1992)
suggest the functional form

w(F) :=
F γ

(F γ + (1 − F)γ )1/γ
, (1)

where γ ∈ (0, 1] and a smaller value for γ refers to a larger
amount of probability weighting.4 For simplicity we will follow
this definition throughout the paper, although some of our results
carry over to other functional forms for w (in particular the one
suggested by Karmarkar, 1978) or require only qualitative features
of w.

There are nowadays two main versions of prospect theory:
the original form going back to Kahneman and Tversky (1979)
applies the function w directly to the probabilities of the different
outcomes and thus overweights small and underweights large
probability outcomes. For lotterieswith outcomes xi and respective
probabilities pi this leads to the definition

PT (p) =

n
i=1

w(pi)u(xi), (2)

where PT (p) is the prospect theory utility of a probability
distribution p (Kahneman and Tversky, 1979; Schneider and Lopes,
1986; Wakker, 1989).

There is also a second version of prospect theory, called
cumulative prospect theory (short: CPT) going back to Tversky
and Kahneman (1992). It weights cumulative probabilities Fi :=i

j=1 pj instead of the probabilities themselves. The weighting
factor for the i-th outcome is then the difference of the weighted
cumulative probabilities, i.e.w(Fi)−w(Fi−1). CPT overweights only
low probability events with extreme outcomes.

Both theories are ‘‘irrational’’ in the sense that they do not
satisfy the independence axiom. In the more general sense
of Arrow (1950) they are, however, rational as they respect
completeness and transitivity.

CPT has been applied to various problems in decision theory,
economics and finance.

1.2. Prospect theory preferences in games

When players in a game act according to prospect theory there
are a couple of interesting changes to the existence and to certain
properties of equilibria.5 In this paper we concentrate on one

4 If γ becomes too small, the function w fails to be non-decreasing. Therefore
in applications γ is usually chosen to be larger than approximately 0.3 to avoid
consistency problems. A value of γ > 1 would correspond to an underweighting of
small probabilities which is empirically not observed.
5 Some of the more theoretical consequences are discussed in a follow-up work

(Metzger and Rieger, 2009).

particular aspect, namely the effects of probability weighting on
the location of Nash equilibria.

Probability weighting is obviously only important when
probabilities play a role in games. This is the case whenever
mixed strategies are optimal. The interplay between probability
weighting and mixed strategies adds new aspects that have
not been studied in the previous work on non-expected utility
preferences in games (Chen and Neilson, 1999; Fershtman et al.,
1991; Butler, 2007; Lo, 1999).

Let us consider a finite normal-form game with two players
(without chance moves). In this game, a player i can choose from
the strategy set Si, i ∈ {A, B} of (finitely many) pure strategies.
We denote the set of all combinations of pure strategies S :=�

i∈{A,B} Si. The set of probability measures on Si is denoted by Mi
and describes the mixed strategies of player i. The combinations of
mixed strategies are denoted by M :=

�
i∈{A,B} Mi. The payoff (in

utility units) of the game for the i-th player is given by ui: S → R.
The game can then be written as (Si, ui)i∈{A,B}.

The total utility U that a player, say player A, obtains for some
mixed strategy play m = (m1, . . . ,mn) ∈ M depends on the
underlying decision model. In the case of EUT, this utility becomes

UEUT
A (m) =


s=(sA,sB)∈S

mA(sA)mB(sB)uA(s),

where mi(s) is the probability of the player i to play strategy s.
Let us now take probability weighting into account and let

the probability weighting functions of the players be given by wi.
Assuming that players weight the probability with which their
opponents play their respective strategies, we obtain the following
prospect theory utility for the player A:

UPT
A (m) =


s=(sA,sB)∈S

mA(sA)wA(mB(sB))uA(s). (3)

We assume that the players do not weight the probabilities of their
own strategies.6 Here and in the remaining part of this article we
assume that the reference point of the value function u is fixed, see
Metzger and Rieger (2009) for generalizations.

While the difference between the classical prospect theory
model (PT) and cumulative prospect theory (CPT) is often small,
it turns out that in the application to games, both theories require
quite different modeling effort. The main difference is here that in
order to apply CPT we need to sort outcomes according to their
ranks. Let us denote the potential outcomes for player A by uA(i, k),
where i is his own strategy and k is the strategy played by his
opponent, player B. To define cumulative probabilities we sort
these outcomes first. To this end we define permutations σ A

i on
{1, . . . , n} such that

uA(i, σ A
i (k)) ≤ uA(i, σ A

i (k + 1)), for all k = 1, . . . , n − 1.

With this notation we can define the cumulative probabilities7
of player B’s actions as seen from player A by

FA(i, k) :=

k
l=1

mB
σA
i (k)

, FA(i, 0) := 0.

6 There is an older approach by Dekel et al. (1991) for non-expected utility theory
which weights also the probabilities of the player’s own strategies. This approach
cannot be extended to the cumulative prospect theory, since it is not possible to
rank both the player’s and the opponent’s strategies simultaneously by the payoff.
There are also conceptual reasons in favor of the approach used here, see Metzger
and Rieger (2009).
7 There are slight differences in the precise definition of CPT in the literature.

In the original formation (Tversky and Kahneman, 1992), cumulative probabilities
have been used in losses, but de-cumulative probabilities in gains. For our analysis,
this difference would not change any qualitative results. Moreover, it is possible
to convert both definitions by simply defining the probability weighting function
appropriately in gains and losses.
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