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a b s t r a c t

We consider the problem of allocating m objects to n agents. Each agent has unit demand, and has strict
preferences over the objects. There are qj units of object j available and the problem is balanced in the
sense that


j qj = n. An allocation specifies the amount of each object j that is assigned to each agent

i, when the objects are divisible; when the objects are indivisible and exactly one unit of each object is
available, an allocation is interpreted as the probability that agent i is assigned one unit of object j. In
our setting, agent preferences over objects are extended to preferences over allocations using the natural
lexicographic order. The goal is to design mechanisms that are efficient, envy-free, and strategy-proof.
Schulman and Vazirani show that an adaptation of the probabilistic serial mechanism satisfies all these
properties when qj ≥ 1 for all objects j. Our first main result is a characterization of problems for which
efficiency, envy-freeness, and strategy-proofness are compatible. Furthermore, we show that these three
properties do not characterize the serial mechanism. Finally, we show that when indifferences between
objects are permitted in agent preferences, it is impossible to satisfy all three properties even in the
standard setting of ‘‘house’’ allocation in which all object supplies are 1.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of allocating m objects to n agents.
Each agent i has unit demand, and an amount qj, not necessarily
integer, of object j is available. We assume that


j qj = n, so that

supply and demand are balanced. An allocation A = (aij) is a non-
negative n × m matrix in which each row i adds up to 1 and each
column j adds up to qj. The ith row of the allocationmatrix A is also
referred to as agent i’s allocation.1 If the objects are divisible, aij is
simply the amount of object j that agent i receives; if the objects
are indivisible and exactly one unit of each object is available, we
may interpret aij as the probability that agent i receives object j.2

Each agent i has a strict preference ordering Pi over the set
of objects: for objects j and k, we say that j>Pi k (or simply
j>i k) if and only if agent i strictly prefers j to k. This strict
preference ordering over objects can be extended to a preference

∗ Corresponding author.
E-mail addresses: dhs2131@columbia.edu (D. Saban), jay@ieor.columbia.edu

(J. Sethuraman).
1 We use the term ‘‘allocation’’ for both the matrix A, which describes the

allocation for all agents, and for any of its rows, which describes the allocation for
the corresponding agent.
2 This case corresponds to the well-studied ‘‘house allocation’’ problem

(Bogomolnaia and Moulin, 2001; Katta and Sethuraman, 2006; Sonmez and Ünver,
2010).

ordering over allocations in many different ways. In this paper
we shall restrict our attention to the lexicographic extension, first
considered in this context by Cho (2012) for the probabilistic
assignment of indivisible objects, and, independently, by Schulman
and Vazirani (2012) for allocating divisible objects. Given two
allocations A and A′, agent i prefers the one in which he receives
more of his most-preferred object; if he receives the same amount
of his most-preferred object in both, he prefers the one in which
he receives more of his second most-preferred object, etc. To state
this formally, suppose that agent i’s preference ordering over the
objects is 1>i 2>i · · · >i m. Given two allocations A and A′, agent
i lexicographically prefers A to A′ if and only if the first non-zero
entry in (ai1 − a′

i1, ai2 − a′

i2, . . . , aim − a′

im) is positive. Of course,
agent i is indifferent between A and A′ if and only if i’s allocation is
the same in A and A′. Note that the preference ordering is complete
in the sense that given two different allocations for agent i, he will
always prefer one to the other.

A problem is completely specified by the set of agents N along
with their preferences, and the set of objects with the correspond-
ing qj. A mechanism is a function that maps each problem to an al-
location. Typically, the goal is to design a mechanism that satisfies
certain desirable properties. To state these properties formally, it
is important to define the notion of dominance.

Definition 1 (Dominance). An allocation A′ dominates an alloca-
tion A if each agent i (weakly) prefers his allocation in A′ to that
in A.
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Note that each agent compares his allocation in A to that in A′

using the lexicographic extension of his preference ordering over
the objects. Using this definition of dominance, we next define
efficiency and envy-freeness for allocations.

Definition 2 (Efficiency). An allocation A is efficient if it is not
dominated by any other allocation A′.

Definition 3 (Envy Freeness). An allocation A is envy-free if each
agent i (weakly) prefers his allocation to the allocation of any other
agent.

A mechanism is efficient if it associates an efficient allocation
with each problem, and it is envy-free if it associates an envy-free
allocationwith each problem.3 In otherwords, amechanism is said
to be efficient if, in any problem, there is no way to strictly improve
one agent’s allocation without making another agent worse off; it
is envy-free if each agent prefers his allocation to that of any other
agent in any problem. Our final desideratum for a mechanism is
strategy-proofness. Informally, a mechanism is strategy-proof if it
is not possible for any agent to improve his allocation by falsifying
his preferences, regardless of the preferences of the other agents.
Formally:

Definition 4 (Strategy-Proofness). For each agent i, and for each
profile of preferences P−i = (P1, P2, . . . , Pi−1, Pi+1, Pi+2, . . . , Pn),
let Ai and A′

i be the allocations of agent i when the mechanism
is applied to the profiles (Pi, P−i) and (P ′

i , P−i) respectively. A
mechanism is strategy-proof if Ai ≥Pi A

′

i for all i, Pi, P−i, and P ′

i .
Bogomolnaia and Moulin (2001) proposed an important new

mechanism for the house allocation problem that they called
the probabilistic serial (PS) mechanism. The specific preference
model they assumed was the one based on first order stochastic
dominance (hereafter, the sd-preferencemodel): an agent i prefers
an allocation A to an allocation A′ if A stochastically dominates
A′, or equivalently, agent i’s expected utility of A is greater than
that of A′ for every utility function consistent with his preference
ordering. Although this notion leads only to a partial ordering over
allocations for each agent, theywere able to show that the outcome
of the PS mechanism was strongly envy-free in the sense that
each agent’s allocation stochastically dominates the allocation of
any other agent. Furthermore, they proved that the PS mechanism
was efficient (no other allocation matrix stochastically dominates
the PS outcome), but only weakly strategy-proof (by misreporting
his preference ordering, an agent cannot obtain an allocation that
stochastically dominates his true allocation). Moreover, they show
that nomechanism satisfies efficiency, envy-freeness and strategy-
proofness in the sd-preference model.

Given that no mechanism is efficient, envy-free, and strategy-
proof in the sd-preference model, one can consider relaxations of
these requirements. The model of this paper, due to Cho (2012)
and, independently, Schulman andVazirani (2012), can be seen as a
relaxation of the stochastic dominance preferencemodel, in which
agents compare allocations based on lexicographic preferences.
The key motivation for considering lexicographic preferences
is three-fold: first, lexicographic preferences form a complete
relation so that every pair of allocations can be compared; second,
it is a weakening of the stochastic dominance preference model in
the sense that stochastic dominance implies lex-dominance; and
finally, it can be interpreted as a limiting case of agents with von
Neumann–Morgenstern utilities.4

3 In this paperwe shall be concernedwith envy-freemechanisms only. To be able
to compare allocations across agents, we need the agent demands to be identical,
and we normalize this demand to 1; this is really the rationale for insisting a priori
that every agent has unit demand. The mechanisms described here admit natural
extensions to settings in which the agents have different demands.
4 Lexicographic preferences have a long history in the economics literature,

dating back at least to Hausner (1954), who formulated the theory of lexicographic

Cho (2012) observed that the probabilistic serial mechanism of
Bogomolnaia andMoulin (2001) satisfies all three properties when
m = n, qj = 1 for all j, and the objects are indivisible. Indepen-
dently, Schulman and Vazirani (2012) studied the lexicographic
preference model when agents’ demands and objects’ supplies are
arbitrary5 and the objects are divisible. Their algorithm – called
synchronized greedy (SG) – is efficient in all cases, envy-free when
the agents have unit (or equal) demands, and strategy-proof when
the maximum amount demanded by an agent is at most the min-
imum supply of an object. Specialized to our setting then, the SG
mechanism is efficient and envy-free, and is strategy-proof when-
ever qj ≥ 1 for all j.

Our first result, proved in Section 2, is that when this last condi-
tion is not satisfied no mechanism can satisfy all three properties.
Specifically, we show that if there is an object j with qj < 1, then
there is an instance involving as many agents as objects for which
no strategy-proof mechanism can be both efficient and envy-free.
In proving this result we assume that we are free to choose all the
parameters of the problem: the number of agents, the number (and
supply) of objects, and the preference ordering of the agents. A nat-
ural question is if a similar result is possible for a given number of
agents and a fixed set of objects with a given supply vector, with
only the agent preferences varying. For this setting, we character-
izewhen it is possible to find amechanismsatisfying all three prop-
erties: we show that either the synchronized greedymechanism is
strategy-proof for every preference profile (and hence satisfies all
three properties) or nomechanism can satisfy all three properties.
One way to interpret this result is that whenever the SG mecha-
nism fails strategy-proofness, so does every other mechanism that
is envy-free and efficient. Our next two results answer questions
left open by Schulman and Vazirani (2012): in Section 3, we show
that the synchronized greedy mechanism is not the only mech-
anism with these properties by constructing a ‘‘hybrid’’ mecha-
nism that incorporates elements of a greedymechanismand the SG
mechanism. This new mechanism satisfies an invariance property
called bounded invariance (defined formally in Section 3), in addi-
tion to being efficient, envy-free and strategy-proof. An important
consequence is that envy-freeness, efficiency, and bounded invari-
ance do not characterize the SGmechanismwhen agents have lexi-
cographic preferences; this is in sharp contrast to the sd-preference
model, where these properties do characterize the serial mecha-
nism (see Bogomolnaia and Heo, 2012). In Section 4 we allow for
the agents to be indifferent between objects. The natural exten-
sion of the serial mechanism to this setting, developed by Katta
and Sethuraman (2006), is efficient and envy-free but not strategy-
proof. We show that nomechanism can be efficient, envy-free and
strategy-proof, even for the special case of unit qj.

2. Strict preferences: strategy-proofness

Schulman and Vazirani show that the SGmechanism is efficient
and envy-free, and is strategy-proof whenever qj ≥ 1 for all j.
We start this section by showing that, in the absence of this last
condition, nomechanism can satisfy all three properties.

expected utility. The key point of departure from the standard expected utility
theory is that continuity is not required; thus, preferences over lotteries that
do not satisfy continuity can be represented by a vector-valued utility function,
and preferences over lotteries translate to lexicographic dominance of the
corresponding utility vectors. We refer the reader to Cho (2012) for a more
extensive discussion.
5 Earlier, Heo (2010) extended the probabilistic serial mechanism to the more

general case of arbitrary object supplies and arbitrary agent demands (not
necessarily 1), but focused on the sd-preference model. She showed that the serial
rule (as she termed it) is efficient, and envy-free (if agents have unit demands).
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