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Abstract

Stationary systems modelled by elliptic partial differential equations—Ilinear as well as nonlinear—with stochastic
coefficients (random fields) are considered. The mathematical setting as a variational problem, existence theorems,
and possible discretisations—in particular with respect to the stochastic part—are given and investigated with regard
to stability. Different and increasingly sophisticated computational approaches involving both Wiener’s polynomial
chaos as well as the Karhunen-Loéve expansion are addressed in conjunction with stochastic Galerkin procedures,
and stability within the Galerkin framework is established.

New and effective algorithms to compute the mean and covariance of the solution are proposed. The similarities and
differences with better known Monte Carlo methods are exhibited, as well as alternatives to integration in high-dimen-
sional spaces. Hints are given regarding the numerical implementation and parallelisation. Numerical examples serve as
illustration.
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1. Introduction

In many applications the values of the parameters of the problem are not exactly known. We may take
the simulation of groundwater flow as an example. Knowledge about the conductivity of the soil, the mag-
nitude of source-terms, or about the in- and out-flow boundary conditions is often very uncertain. These
uncertainties inherent in the model result in uncertainties in the results of numerical simulations.

Stochastic methods are one way to model these uncertainties, and in our case we are concerned with spa-
tially varying randomness, and model this by random fields [1,80,14]. If the physical system is described by
a partial differential equation (PDE), then the combination with the stochastic model results in a stochastic
partial differential equation (SPDE). The solution of the SPDE is again a random field, describing both the
expected response and quantifying its uncertainty.

SPDEs can be interpreted mathematically in several ways. At the moment we concentrate on random-
ness in space. If evolution with stochastic input has to be considered, one may combine the techniques de-
scribed here with the already well-established methods in that field [44]; for theoretical results, e.g. see [57].

We shall distinguish—as in the case of stochastic ordinary differential equations (SDEs)—Dbetween addi-
tive and multiplicative noise. As is well known from SDEs, in the case of multiplicative noise one has to be
more careful. A similar problem occurs here. Additive noise—particularly for linear problems—is well
known and much simpler to deal with [46], even if the random fields are generalised to stochastic distribu-
tions. With multiplicative noise on the other hand the product of a random coefficient field and the solution
may have no meaning [31]. As with SDEs, it is a modelling decision how this is resolved [44].

Additive noise corresponds to the case where the right-hand side—the loading or the solution independ-
ent source term—is random, whereas when the operator is random, we have multiplicative noise. In the first
case it is the external influences which are uncertain, in the latter it is the system under consideration itself.

A theory of SPDEs where products between random fields are interpreted as Wick products was devel-
oped in [31]. This allows highly irregular random fields as coefficients, and obtains the solution as a stoch-
astic Kondratiev distribution. Its main shortcoming is that—e.g. for linear problems—higher statistical
moments of system parameters do not influence the mean of the solution, a contradiction to the results
of homogenisation theory. Another problem is the required existence of strong solutions [31] to the
PDE. These may be relaxed by a variational formulation [79,53,78], but nonetheless the Wick product
seems not to be the right model for the problems that we aim at.

For products interpreted in the usual sense, stronger regularity is required for the coefficient random
fields [12], still allowing the stochastic part of the solution to be a Kondratiev distribution.

In the numerical framework, the stochastic regularity of the solution determines the convergence rate of
numerical approximations, and a variational theory for this was earlier devised in [79,11] and extended in
[78]. Further results in a more restricted setting can be found in [17,4,6,7].

The ultimate goal in the solution of SPDEs is usually the computation of response statistics, i.e.
functionals of the solution. Monte Carlo (MC) methods can be used directly for this, but they require a
high computational effort [13]. Variance reduction techniques are employed to reduce this somewhat.
Quasi-Monte Carlo (QMC) methods [13,58] may reduce the computational effort considerably without
requiring much regularity. But often we have high regularity in the stochastic variables, and this is
not exploited by QMC methods. We propose sparse (Smolyak) quadrature methods as an efficient alterna-
tive. These have first been described in [75] and have found increasing attention in recent years, €.g.
[59,68,22,29].

Alternatives to Monte Carlo (e.g. [64,20]) methods, which first compute the solution and then the re-
quired statistic, have been developed in the field of stochastic mechanics—cf. [47,48], for example pertur-
bation methods, e.g. [43], methods based on Neumann-series, e.g. [26,4], or the spectral stochastic finite
element-method (SSFEM) [26]. The latter expands the random fields in eigenfunctions of their covariance
kernels, and obtains the solution by a Galerkin method in a space of stochastic ansatz functions. More
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