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Abstract

Two-ply laminated architectural glass used in automotive industry since 1914, now become an important element in

construction industry as well. Regarding its importance, a theoretical model is needed for the laminated glass beams

investigated mostly experimentally so far. In this paper, a mathematical model for the behavior of laminated glass

beams is introduced. The minimum total potential energy principle is employed in developing the mathematical model

by assuming large deflection for a laminated composite beam since glass beams are very thin. The model is then vali-

dated by the experimental and finite element models for the simply and fixed supported beams respectively. It is pre-

sented that the behavior of laminated glass beams under large deflections could be linear or nonlinear regarding the

boundary conditions or constraints.
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1. Introduction

Architectural laminated glass beam comprises two

layers of glass with a layer of elastomeric polymer in be-

tween, which is usually called polyvinyl butyral (PVB).

This composite unit is used for safety in glazing applica-

tions. When it is broken under wind load or for other

reasons, the soft plastic interlayer between the glass lay-

ers keeps the unit intact and prevents dangerous shards

from splitting and lacerating people.

The layered combination of very hard (glass) and very

soft (interlayer) materials to form a laminated glass unit

makes the unit behave in a very unusual manner due to

the order difference in modulus of elasticity of materials.

On the other hand, since the glasses are very thin the unit

undergoes large deflections even under its own weight.

Large deflection of a laminated glass beam could pro-

duces nonlinear behavior for the type of boundary condi-

tions that create membrane forces, such as fully fixed end

conditions. But contrary to the case with fully fixed end

conditions, the fully simply supported laminated glass

beam behaves linearly even at large deformations since

axial constraints are not developing.

2. Previous research

Studies on the bending of simply supported lami-

nated glass beams under distributed, three-point and

four-point loadings have been conducted by Hooper

[1], Behr et al. [2], Edel [3] and Norville et al. [4].
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Simply supported beams considered in the above

studies behave linearly with respect to load. The first

study on laminated glass beams was conducted by Hoo-

per [1]. He derived a mathematical model for the bend-

ing of laminated glass beams under four-point loading

based on a solution to a problem of bending of parallel

beams interconnected by cross members. In this ap-

proach, the solution method centered on replacing the

discrete assemblage of interconnecting cross-members

by a continuous medium of equivalent stiffness, the med-

ium itself being firmly attached to the beams at each

interface. Hooper saw that this latter condition corre-

sponded precisely to that prevailing in the case of archi-

tectural laminated glass, in which a relatively soft

continuous layer is confined between two glass layers,

and remains in adhesive contact with them during bend-

ing. He solved the relevant differential equation in terms

of the applied bending moment and the axial force in

one of the plies via Laplace transform, to plot three

influence factors K1, K2 and K3, respectively, propor-

tional to the axial force in one of the plies, shear strain

in the interlayer and central deflection. He noted that

since PVB is a viscoelastic material its shear modulus

can be written as a function of time which asymptoti-

cally approaches zero as time increases. He also con-

ducted tests on laminated glass beams with PVB

interlayer under short (<3 min) and long (80 days) load-

ing durations.

Because of difficulties in modeling of laminated

glasses, researchers first try to model the laminated

glasses as a layered glass unit formed by two glass layers

put on top of each other with no interlayer and no fric-

tion in between, or monolithic glass having a thickness

equal to the total thickness of glass layers in laminated

glass unit. Behr et al. [5], considering that the shear mod-

ulus of the PVB interlayer with plastic and viscoelastic

properties is several orders of magnitude less than that

of glass, concluded that the effective shear modulus of

the interlayer is proved to be very low. This implied that

laminated glass units could be approximated as ‘‘lay-

ered’’ units with no shear connection between the adja-

cent glass plates, and finite difference solution could be

used to calculate the limiting cases of layered and mono-

lithic systems. They conducted a series of experiments on

layered, monolithic and laminated glass units. It was ob-

served that at room temperature the laminated glass unit

deflected like a monolithic glass plate having the same

glass thickness, whereas at higher temperatures it de-

flected increasingly like a layered glass unit having

the same glass thickness. It was also observed that the

Nomenclature

A coefficient matrix

A1, A2 cross-sectional area of top and bottom glass

ply

b width of beam

E modulus of elasticity of glass

G shear modulus of interlayer

h thickness of single glass ply

ht total thickness of laminated glass unit

h1, h2 thickness of top and bottom glass plies

I cross-sectional moment of inertia of the

laminated glass section

I1, I2 cross-sectional moment of inertia of the top

and bottom glass plies, respectively

L half length of beam

M bending moment in the beam

N1, N2 cross-sectional force in the top and bottom

glass ply

num number of discrete points along the beam

P point load applied at the middle of beam

q uniformlydistributed load applied over the

length of beam

R right-hand side vector

t thickness of the interlayer

U total strain energy

Ui
m membrane strain energy for the top and bot-

tom ply

Ui
b bending strain energy for the top and bot-

tom ply

U sxz shear strain energy for the interlayer

u1, u2 in-plane displacement for the top and bot-

tom ply in the x direction

V potential energy of applied loads

w lateral displacement vector

wmax maximum displacement in the plate

wo(i) lateral displacement calculated in the previ-

ous step

x, z rectangular coordinates

a, b, k parameters related with section geometry

and material properties

eix axial strain energy for the top and bottom

ply

eib bending strain energy for the top and bot-

tom ply

cxz shear strain in the interlayer

g underrelaxation parameter for convergence

P total potential energy of the system

rtop1 ; rbot1
bending stresses on the top and bottom

surfaces of the top ply

rtop2 ; rbot2
bending stresses on the top and bottom

surfaces of the bottom ply

s shear stress in the interlayer
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