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Abstract

The goal of shape control is nullification of the structural deformations caused by certain external disturbances,

mainly body forces and surface traction. Dynamic structural shape control is concerned with vibration suppression.

Determination of a proper distributed actuation is understood through the interaction of structural mechanics (of smart

materials) and control engineering. Imposed strains (eigenstrains) are of quasistatic thermal nature in graded materials,

or mainly make use of the piezoelectric effect in smart composites containing conventional ferroelectric polycrystals,

natural crystals or special polymers. For large scale structures tendons or built-in hydraulic actuators are available.

For discretized or discrete structures (e.g., trusses) the general solution is given in terms of the flexibility matrix and

the two, orthogonal subspaces, of the impotent and nilpotent eigenstrains in Hilbert space are mentioned. Since impo-

tent eigenstrains do not produce stress, they are ideally suited for shape control. Further, vibration suppression is dis-

cussed in the context of separation in space and time of the forcing function. In those cases, knowledge of the

quasistatic load deformation suffices to define the distributed actuators producing impotent eigenstrain.
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1. Introduction

Haftka and Adelman [1] presented an analytical pro-

cedure for computing the temperature field in the sup-

porting structure to minimize deviations of large space

structures from their original shape calling the proce-

dure ‘‘shape control of structures’’. Their detailed com-

putational efforts considered a 55 m radiometer antenna

supported by tetrahedral truss modules. One of the first

attempts to apply shape control in Aeronautics in the

open literature by Austin et al. [2] considered an adap-

tive wing of a fighter plane. An early application to ro-

tary wings to suppress their vibrations is given by

Nitzsche and Breitbach [3]. With the technology of

smart materials developing at a vast stage, aerospace

applications changed from futuristic aspects into appli-

cability, and reviewing papers summarizing the state-

of-the-art appeared, Crawley [4]. Further reviews, with

emphasis on piezoelectricity and its application in dis-

turbance sensing and control of flexible structures by

Rao and Sunar [5], including active vibration control

of laminated piezoelectric beams, plates, and shells by

Saravanos and Heylinger [6], with emphasis on control,

sensors and actuators by both, Tzou [7] and Lee [8] fol-

lowed. A most recent review of static and dynamic shape

0045-7949/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.compstruc.2004.08.026

* Tel.: +43 1 58801 201 10; fax: +43 1 58801 201 99.

E-mail address: franz.ziegler@tuwien.ac.at

Computers and Structures 83 (2005) 1191–1204

www.elsevier.com/locate/compstruc

mailto:franz.ziegler@tuwien.ac.at


control by piezoelectric actuation is presented by Irschik

[9]. Smart composite structures are considered by Tauc-

hert et al. [10] and the overall developments including

computational aspects are documented in the Proceed-

ings edited by Gabbert [11], Bahei-el-Din and Dvorak

[12], Gabbert and Tzou [13] and Watanabe and Ziegler

[14].

With respect to shape control of smart structures,

this problem has been tackled in general by non-linear

optimization techniques, where a finite number of

(shaped) actuator patches has been applied to the struc-

ture. The shaping problem is tackled by Pichler [15]. For

an intelligent plate see Agrawal et al. [16], Varadan et al.

[17], for composite plates and shells, see Koconis et al.

[18]. Since a finite number of actuator patches is consid-

ered, or localized temperature fields are applied in

graded materials, such a collocation produces the

desired deflection of a flexible distributed-parameter

system only approximately.

In the present paper, the direct solution of the

quasistatic shape control problem in the context of

the multiple field approach (i.e. considering the given

structure in the background) is discussed, for details

see Irschik and Ziegler [19]. An outlook on stress con-

trol is given by Nyashin et al. [20] and Nyashin and

Lokhov [21]. The extension to dynamic problems is

derived by Irschik and Pichler [22]. In the latter case,

under conditions of time and space separable loads it

is sufficient to control the much simpler quasistatic

force deformation, see also Irschik et al. [23]. Empha-

sis is led upon the definition of proper eigenstrain dis-

tributions, for precise definitions see Reißner [24],

however under the assumptions of unlimited intensity

of the sources and their continuous distribution. In

this sense, benchmark solutions are derived and their

practical application becomes necessarily approximate.

‘‘Eigenstrain’’ is a generic name originally given by

Mura [25], to inelastic strains resulting from thermal

expansion, phase transformation, initial strains, plastic

strains, and misfit strains. Other imposed strains pro-

duced e.g., by electrical fields in piezoelectric materi-

als, are of the same nature and in this context

understood as eigenstrains. Shape control is ideally

performed by impotent eigenstrains which produce

deformation but no stress. The separated stress control

procedure, however, is subjected to severe constraints

given by the local conditions of equilibrium, and is

achieved by nilpotent eigenstrains. The latter produce

stress but no deformations and thus have no influence

on shape control. Classical examples are known in

thermoelasticity, Ziegler and Irschik [26], or have been

encountered in the case of flexural vibrations of piezo-

electric beams and attributed to an electric field with-

out deflection, Irschik et al. [27]. When properly

defined, they can be used to redistribute the load stres-

ses without influencing shape control.

2. (Quasi-)static shape control

The control of the deformations of linear elastic

structures, produced by force loading, body forces

and/or surface traction, by means of imposed eigen-

strains is discussed in general terms of the associated

boundary value problems. In this context, the Green�s
stress dyadic is assumed to be known in principle, and

the class of impotent eigenstrains is determined by

inspection and identified as compatible strains, i.e. they

are equal to the strains produced by the given load, or

alternatively, in case of a desirable deformation, the lat-

ter must be related to a distribution of a fictitious force

load. This class of eigenstrains when activated by dis-

tributed ‘‘actuators’’, produce deformations but no

stresses in the structure under consideration, say in the

background. Interaction of the force strain field and

the eigenstrains, properly produced by these actuators,

interact in the background in the sense of the multiple

field concept.

2.1. Force load

We consider the general boundary value problem of a

linear elastic, possibly anisotropic body loaded by body

forces and/or surface traction. The local equilibrium

requires

divrðFÞ þ b ¼ 0 ð1Þ

where in this section the stress tensor r = r(F) is substi-
tuted. On part of the boundary, kinematic boundary

conditions apply

Cu : u ¼ 0; . . . ð2aÞ

where the displacement produced by the force loading

u = u(F) is understood in Eq. (2a). On the remaining

part, the traction are prescribed

Cr : r � n ¼ tðnÞ ð2bÞ

where r = r(F) in Eq. (2b). Within the validity of linear-
ized geometric relations for the strain produced by the

force load,

eijðFÞ ¼ 1
2
ui;j þ uj;i
� �

ðFÞ ð3Þ

and with Hooke�s law taken into account

eijðFÞ ¼ CijlmrlmðFÞ ð4Þ

the solution of the force–displacements ui(F), i = 1,2,3, by

means of the principle of virtual forces, see Ziegler [27],

is given in the form of the volume integral, a comple-

mentary Green�s formula,

1 � ukðFÞðxÞ ¼
Z
V
erijðkÞ n; x

� �
eijðFÞ n

� �
dV n
� �

ð5Þ

which represents a virtual work relation. The Green�s
stress dyadic er ijðkÞ produced by a unit single force
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