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Abstract

The vibrational behavior of geometrically nonlinear, finitely electroconductive, isotropic elastic plate strips

immersed in an axial magnetic field is investigated. Kirchhoff hypothesis in conjunction with von-Kármán�s concept
of strain is used to model the mechanical part, while the assumptions proposed by Ambartsumyan et al. are adopted

to model the distribution of electric and magnetic disturbances through the plate-strip thickness. A system of nonlinear

singular integro-differential equations are obtained, and by applying the Galerkin�s method, a third order nonlinear
ordinary differential equation is derived. The influence of the magnetic field and electroconductivity on the plate-strip

vibration is investigated and analytical solutions of the nonlinear fundamental frequency are obtained via the Method

of Multiple Scales for two special cases, consisting of weak magnetic field and high electroconductivity. Finally, some

pertinent conclusions are provided.
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1. Introduction

One of the widely adopted assumptions to deal with

electroconductive elastic structures immersed in a mag-

netic field is that of the infinite electric conductivity.

However, due to the extremely large variations of elec-

tromagnetic properties of the materials, the universal

adoption of such an assumption becomes really ques-

tionable. In fact, one of the reasons of its adoption is

due to the considerable simplification of the governing

equations, which otherwise are very difficult to handle.

However, the finiteness of electroconductivity does pro-

duce new phenomena, as evidenced by some incipient

available results obtained within the linearized frame-

work of the problem. The research work reported in

the present article was prompted by the requirement of

putting into evidence its implications. Due to the high

intricacy of the problem being addressed, this study will

be confined to the nonlinear vibration of finitely electro-

conductive plate strips immersed in an axial, static mag-

netic field. The objective herein is to investigate, in the

presence of a magnetic field, the influence of finiteness

of electroconductivity on the nonlinear vibration fre-

quencies and amplitude of the plate strips.
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2. Field equations

The system of equations that govern the magneto-

elastic vibrations of thin plate-strips will be rigorously

derived from the 3D theory of electromagnetoelastic

continuum (see e.g., [1–3]). In order to be reasonably

self-contained, in what follows, the equations of electro-

dynamics and the equations of motion of 3D elastic

media will be summarized.

Expressed in Gauss� system of units, in the absence of
electrical free charges, the relevant field equations are

(see e.g., [1–8]):

Faraday’s Law : curlE ¼ � 1
c
oB

ot
ð1Þ

Amp�ere’s Law : curlH ¼ 4p
c

J ð2Þ

Gauss’ Law : divD ¼ 0 ð3Þ

Conservation of flux : divB ¼ 0 ð4Þ

Equations of motion : Sjrðdir þ V i;rÞ
� �

;j
þ fi

¼ q0
o2V i

ot2
ð5Þ

In Eqs. (1) and (2), c is the speed of

light(c = 3 · 1010cm/sec), while in Eqs. (5), dij is the Kro-
necker delta, Sij (�Sji) are the components of the second
Piola–Kirchhoff stress tensor, V is the displacement vec-

tor of the 3-D material points with components Vi
(i = 1,2,3), and fi are the components of the ponderomo-

tive force vector f per unit volume, which can be ex-

pressed as:

f ¼ 1
c
ðJ� BÞ ð6Þ

For isotropic, linear and elastic non-ferromagnetic

materials, the constitutive equations are:

B ¼ H; D ¼ E; J ¼ r Eþ 1
c
oV

ot
� B

� �
ð7aÞ

Sij ¼
E

ð1þ mÞ
m

ð1� 2mÞ ekkdij þ eij

� �
; ði; jÞ ¼ 1; 3 ð7bÞ

where r is the electric conductivity, E and m are the
Young�s modulus and Poisson�s ratio of the material,
respectively, while eij are the components of the

Lagrangian strain tensor. The associated boundary con-

ditions are (see, e.g., [1–8])

n� ðE� EeÞ ¼ 0; n� ðH�HeÞ ¼ Js;

n � ðB� BeÞ ¼ 0 ð8aÞ

niðSij � SjrV i;r þ TijÞ ¼ F j þ niðTijÞe ð8bÞ

In Eqs. (8a) and (8b), n is the unit vector on the exter-

nal normal of the deformed surface of the plate strip; Js
is the electric current vector on the surface; Fj are the

components of the surface load vector F of mechanical

origin; the subscript ’’e’’ identifies the quantities associ-

ated with the domain outside of the plate strip (i.e. the

vacuum); Tij ¼ 1=ð4pÞ½BiHj � ð1=2ÞH �Hdij
 is the Max-
well stress tensor; while ðTijÞe, Ee, He and Be are the

Maxwell stress tensor, electric field and magnetic induc-

tion vectors in the outer space, respectively.

3. Formulation of the governing system

The geometrical characteristics of the thin plate strip

to be investigated is shown in Fig. 1. The material prop-

erties are assumed to be homogeneous and isotropic.

The reduction of the 3-D equations to the 1-D counter-

parts governing the motion the plate strip is achieved via

Nomenclature

c speed of light, 3 · 10 10cm/s
D flexural stiffness, 2E h3/[3(1�m2)]
E Young�s modulus of the plate strip
g non-dimensional electroconductivity para-

meter, see Eq. (30a)

2h thickness of the plate strip

H01 x1 component of the unperturbed magnetic

field

2‘1 width of the plate strip

r non-dimensional magnetic field intensity

parameter, see Eq. (30b)

m Poisson�s ratio

r electroconductivity of the plate-strip

q0 mass density (per volume) of the plate strip

s non-dimensional time variable, x0t
v x3 component of the perturbed magnetic

field, see Eq. (9)

w x2 component of the induced electric field,

see Eq. (9)

x0 reference frequency, ð4p2=‘21ÞðEh2=½3ð1�
m2Þq0
Þ

1
2

U potential of the perturbed magnetic field, see

Eq. (11)

X non-dimensional frequency, x/x0
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