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Abstract

In this paper we review the basic concepts to obtain a posteriori error estimates for the finite element solution of an
elliptic linear model problem. We give the basic ideas to establish global error estimates for the energy norm as well as
goal-oriented error estimates. While we show how these error estimation techniques are employed for our simple model
problem, the emphasis of the paper is on assessing whether these procedures are ready for use in practical linear finite
element analysis. We conclude that the actually practical error estimation techniques do not provide mathematically
proven bounds on the error and need to be used with care. The more accurate estimation procedures also do not pro-
vide proven bounds that, in general, can be computed efficiently. We also briefly comment upon the state of error esti-
mations in nonlinear and transient analyses and when mixed methods are used.
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1. Introduction

The modeling of physical phenomena arising in engi-
neering and the sciences leads to partial differential
equations in space and time, expressing the mathemati-
cal model of the problem to be solved. In general, ana-
lytical solutions of these equations do not exist, hence
numerical methods such as the finite element method
are employed. A major feature of numerical methods
is that they involve different sources of numerical errors
[1,2]. The focus of this paper is only on the discretization
error which is due to the finite element (polynomial)
approximation of the solution. Hence, we assume that
an appropriate mathematical model has been chosen
and, even for this case, we are only concerned with
one specific error, namely the discretization error arising
in the finite element solution of this model.

Since the late 1970s several strategies have been
developed to estimate the discretization errors of finite

element solutions. Basically, there are two types of error
estimation procedures available. So called a priori error
estimators provide information on the asymptotic
behavior of the discretization errors but are not designed
to give an actual error estimate for a given mesh. In con-
trast, a posteriori error estimators employ the finite ele-
ment solution itself to derive estimates of the actual
solution errors. They are also used to steer adaptive
schemes where either the mesh is locally refined (/-ver-
sion) or the polynomial degree is raised (p-method).
Most a posteriori error estimators developed prior to
the mid-1990s focused on the global error in the energy
norm. Then recently the theory was extended to estimate
the error in particular quantities of interest. To under-
stand the importance of this extension it must be
realized that many local or global quantities of inter-
est—such as deformations, stresses, drag and lift coeffi-
cients or the heat transfer of a structural part—can be
obtained by applying a linear functional to the solution.



Download English Version:

https://daneshyari.com/en/article/9668247

Download Persian Version:

https://daneshyari.com/article/9668247

Daneshyari.com


https://daneshyari.com/en/article/9668247
https://daneshyari.com/article/9668247
https://daneshyari.com

