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Abstract

This paper deals with the low frequency vibratory analysis of fluid–structure interactions in an elastic tank partially

filled with an incompressible inviscid liquid. The originality of this work is to give an exact expression of the gravity

interface operator whereas other standard hydroelastic formulations treat this effect through approximations. The

properties of this so-called elastogravity operator will be studied here from theoretical and numerical point of view.

Experimental measurements will validate the computational model and allow to quantify the effect of coupling between

the liquid sloshing and the hydroelastic deformations of the structure.
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1. Introduction

Many structures designed by mechanical engineers

are intended to contain a more or less important quan-

tity of liquid. Let us cite for example all the means of

transport whose tanks are filled with liquid propellant

(car, aircraft, space launcher, etc.), sea and road tankers,

nuclear reactors or chemical industry containers. Many

industrial domains are then interested in the problematic

of the coupling between an elastic structure and an inter-

nal incompressible fluid, and a huge theoretical and

numerical work has been done on this topic for the last

decades, in particular in the aerospace domain (see for

instance [1]).

We are interested here especially in the vibratory

analysis of this coupled fluid–structure system and ne-

glect all flow-induced vibration effects (see for instance

[2] and also [3–5] for coupling with nonlinear structural

displacements). To compute the eigenmodes of an elastic

structure coupled with an internal inviscid and incom-

pressible fluid, the standard hydroelastic model is gener-

ally used. However, this modelling assumes that the

sloshing potential energy of the fluid, which is its gravity

potential energy, can be neglected with respect to the

deformation potential energy of the structure. Conse-

quently, the gravity is completely omitted in this model-

ling. The fluid is then only represented by a kinetic

energy and its contribution to the system is reduced to

an added-mass effect [6]. The results obtained with this

formulation are correct if the frequency domain of the

coupled system eigenmodes is much higher than the fre-

quency of the first sloshing eigenmodes. In the case of
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slender and flexible structures, such as space launchers

or civil aircraft wings, the first structural eigenfrequen-

cies are very low (between 1 and 2 Hz) and the decou-

pling between the liquid sloshing in tanks and the

structural deformations is no longer a valid assumption.

Some authors proposed to solve this problem by simply

adding the gravity potential energy of the fluid to the

Lagrangian of the system (see for instance [7,6]). In

1966, Tong had proposed a simplified expression for

the fluid added-stiffness matrix due to gravity [8] which

has been often used (see for instance [9]). However, in

1992, Morand and Ohayon proposed the first exact for-

mulation of this operator [10] and the present study

comes within the following of their works.

In this paper, we will first detail the derivation of the

linear local equations of the problem when the effects of

gravity are taken into account. The case of pressurized

closed containers will also be considered. A symmetric

variational formulation will then be deduced. The

expression of the so-called elastogravity operator will

be given and its properties will be discussed. The finite

element discretization of this hydroelastic modelling

with gravity will be carried out and a first experimental

validation will be finally exposed.

2. Linearized local equations of the coupled system

Fig. 1 represents the generic internal fluid–structure

system we consider here. A structure, denoted by XS is

partially filled by a fluid XF. The fluid free surface and

fluid–structure interface are respectively denoted by C
and Ri. The tank ullage, which may be occupied by a

pressurized gas, is denoted by XG. This system is sub-

jected to external surface loads f on Rf and to the action

of gravity g. By definition, the liquid free surface is ini-

tially orthogonal to gravity which is chosen to be in

the opposite direction of the z-axis. Furthermore, the

displacement of the structure is supposed to be known

(equal to 0 for the sake of convenience) on Ru. The par-

ticular case of free fluid–structure systems has already

been studied in previous works [11]. In this first section,

we are going to write the coupled local equations of this

system. The chosen variable for the structure is ordinar-

ily its displacement field uS. The velocity field vF is the

natural variable to describe the fluid state. It is particu-

larly suitable for flowing fluid, but in our case, the fluid

is enclosed and to study its movement, we prefer to

chose the displacement field uF as variable.

2.1. Basic hypotheses and fluid model

As explained in the introduction, herein we are inter-

ested only in the linear vibrations of this system. We

then suppose that external excitations are harmonic

and seek stationary solutions of pulsation x. Further-
more, we assume that the structure is elastic and the

fluid is a Newtonian homogeneous liquid. Since we

can consider the conservative associated system, we omit

the damping aspect in this modelling and suppose that

the liquid is inviscid (dynamic viscosity l = 0). In the fre-

quency range of interest, the compressibility effects in

the liquid can also be neglected which gives the relation

$:vF ¼ 0 ð1Þ

With all these assumptions, the Navier–Stokes equation

written as

qF ovF

ot
þ $

ðvFÞ2

2
þ ð$ ^ vFÞ ^ vF

 !
¼ �$P þ qFg þ l$2vF þ l

3
$ð$:vFÞ ð2Þ

can be simplified and linearized with respect to the var-

iable vF to become the incompressible Euler equation

qF o
2uF

ot2
¼ �$P þ qFg ð3Þ

where qF is the density of the liquid and P is the pressure

in the liquid.

By taking the rotational of Eq. (3) and using the

homogeneous property ($qF ¼ 0), we derive the follow-

ing relation:

qF o2

ot2
ð$ ^ uFÞ ¼ 0 ð4Þ

We then conclude that the irrotationality of the linear

movements of such a liquid is a consequence of the pre-

vious assumptions (if we suppose that $ ^ vFðt¼0Þ ¼
$ ^ uFðt¼0Þ ¼ 0):

$ ^ uF ¼ 0 ð5Þ

2.2. Fluid local equations

Eq. (3) cannot be directly interpreted as the fluid

vibratory equation, because, in this expression, uF is

Ω

Ω

Γ Σ
Σ

Σ

Σ

Ω

Fig. 1. Domain and external load definition.
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