

Available online at www.sciencedirect.com

Microelectronics Reliability 45 (2005) 819-822

MICROELECTRONICS RELIABILITY

www.elsevier.com/locate/microrel

Electrical properties of hafnium silicate films obtained from a single-source MOCVD precursor

Martin Lemberger^{a,*}, Albena Paskaleva^b, Stefan Zürcher^c, Anton J. Bauer^b, Lothar Frey^{a,b}, Heiner Ryssel^{a,b}

^a Chair of Electron Devices, University Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany

^b Fraunhofer Institute of Integrated Systems and Device Technology, Schottkystrasse 10, 91058 Erlangen, Germany ^c Laboratory for Surface Science and Technology, ETH Hoenggerberg, Wolfgang-Pauli Str. 10, 8093 Zurich, Switzerland

> Received 28 June 2004; received in revised form 3 September 2004 Available online 25 December 2004

Abstract

In the present work, the potential of hafnium silicate $(Hf_xSi_yO_2)$ films as an alternative gate dielectric to SiO₂ for future technology generations is demonstrated. Thermally stable $Hf_xSi_yO_2$ films are deposited from a single-source MOCVD precursor. *I–V* and *C–V* measurement data are presented and effects of post-deposition annealing on electrical properties are discussed. A 900 °C O₂-anneal shows best results in terms of leakage current characteristics and is, therefore, intensively investigated.

© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

The aggressive thickness scaling of SiO_2 in complementary metal-oxide-semiconductor (CMOS) processing causes several limitations, such as high leakage currents, enhanced boron penetration, and reliability limitations [1]. Therefore, new high permittivity (high-*k*) gate dielectrics to replace SiO₂-based dielectrics in future technology generations are urgently needed [1]. Intensive studies in the last years revealed ZrO₂ and HfO₂ as promising candidates. Though, the permittivity of silicates and aluminates is lower compared to their respective oxides, Zr and Hf silicates and aluminates are also widely investigated [1–4]. Si or Al are incorporated to increase the crystallization temperature, to reduce oxygen conductivity, and to improve the interface properties to the Si substrate [1]. In this paper, hafnium silicate films (Hf_xSi_yO₂) deposited by metal-organic chemical vapor deposition (MOCVD) from a single-source precursor are investigated. We present results of capacitance–voltage (C-V) and current–voltage (I-V) measurements and discuss influence of post-deposition annealing on electrical properties and current conduction mechanisms through the films.

2. Sample preparation

Electrical characterization was performed using metal insulator semiconductor (MIS) capacitors manufactured on 5 Ω cm p-type Si wafers. After surface conditioning in diluted HF, the Hf_xSi_yO₂ films were deposited immediately by MOCVD using a single-source precursor

^{*} Corresponding author. Tel.: +49 9131 85 28651; fax: +49 9131 85 28698.

E-mail address: martin.lemberger@leb.eei.uni-erlangen.de (M. Lemberger).

^{0026-2714/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.microrel.2004.11.040

(Hf(acac)₂(OSi⁷BuMe₂)₂). The synthesis, structure, and characterization of an equivalent Zr precursor were described in a recent publication [2]. The depositions are performed at 550 °C in Ar/O₂ atmosphere at a total pressure of 2.5 mbar. A part of the samples receive a rapid thermal annealing (RTA) for 10 s in O₂ or N₂ ambient, respectively, at temperatures ranging from 700 to 900 °C. Finally, gate electrodes consisting of stacked 20 nm Ni and 500 nm Al with an area of $2-4 \times 10^4$ cm² are evaporated through a shadow mask.

3. Results and discussion

C-V characteristics are measured at frequencies, f_m , ranging from 10 to 1000 kHz on the basis of a two-element parallel model. The measured C_m-V and D_m-V curves are shown in Fig. 1a (capacitance C_m , dissipation D_m equal $(\omega C_m G_m)^{-1}$, parallel conductance G_m). A considerable discrepancy, both, in accumulation and flat band region is seen ruling out an accurate analysis of the obtained data. The reason for this change in C-Vcharacteristics with f_m is the lack of accuracy of a twoelement circuit model when measuring thin and/or leaky dielectrics. Using the method presented by Yang and Hu [5], the model can be numerically expanded to a more precise three-element model, which takes also the series resistance into account. Performing the correction according

$$C = \frac{f_{m1}^2 C_{m1} (1 + D_{m1}^2) - f_{m2}^2 C_{m2} (1 + D_{m2}^2)}{f_{m1}^2 - f_{m2}^2},$$
(1)

(indices 1, 2 represent two different f_m) unique C-V traces are obtained as shown in Fig. 1a, too. Fig. 1b shows the corrected C-V characteristics for an as-deposited film and samples annealed under different RTA conditions. Table 1 summarizes the results. For the permittivity, k, no clear trend is noticeable, e.g. the values are about 12. However, the physical thickness, d_{phys} , measured by ellipsometry and also the equivalent oxide

Table 1

Paramete	rs extrac	ted from	corrected	C-V	characteristics	for				
samples processed with different RTA steps										

RTA	d _{phys} (nm)	EOT (nm)	k	$V_{\mathrm{FB}}\left(\mathrm{V}\right)$	$Q_{\rm eff} \ (10^{12} {\rm cm}^{-2})$
wlo	14.6	5.2	11.0	0.0	-2.1
N ₂ /700 °C	13.0	4.1	12.4	0.4	-4.8
O ₂ /700 °C	11.0	3.8	11.3	-0.3	-1.1
O ₂ /900 °C	10.5	3.3	12.4	-1.6	7.2

thickness, EOT, determined by C-V change with different RTA conditions. Similar results, i.e. the decrease of $d_{\rm phys}$ of about 20% due to an O₂-RTA step, were found for Zr silicate films deposited from an equivalent precursor [3]. Film analysis by X-ray photoelectron spectroscopy (XPS) reveals that for as-deposited and N₂-annealed films, the C contamination is up to 20 at.%. For samples annealed in O₂ atmosphere, no C is found in the films within the detection limit of XPS. Therefore, a possible explanation for the loss of physical thickness is the C elimination due to O₂-annealing. In terms of flatband voltage, V_{FB}, and (fixed) effective charge, $Q_{\rm eff}$, respectively, the values differ substantially depending on post-deposition RTA (Table 1). For the calculation of $Q_{\rm eff}$, a workfunction difference, $\Phi_{\rm MS}$, of -0.5 V is taken into account. For the as-deposited film, a negative fixed charge is detected, which increases after the N₂-RTA step. As both samples show a considerable high C contamination level, a part of this negative charge can be related to C. For the N₂-annealed sample, no N is detected in the film by XPS. Hence, we assume that a N₂-RTA degrades the bonding structure within the dielectric, e.g. more dangling bonds and correspondingly negative charges exist. This is also supported by J-V measurements (Fig. 2a), where this sample shows highest leakage currents. In the case of the O2-annealed samples, the C-related negative charge is eliminated. However, a negative charge is still detected after the 700 °C O₂-RTA. By increasing the annealing tempera-

Fig. 1. (a) Measured $C_m - V$ and $D_m - V$ curves at different frequencies and corrected C - V characteristic for 900 °C O₂-annealed sample. (b) Corrected C - V curves for as-deposited and under different conditions annealed films.

Download English Version:

https://daneshyari.com/en/article/9672279

Download Persian Version:

https://daneshyari.com/article/9672279

Daneshyari.com