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Abstract

An approximate analytic expression is derived for the electrophoretic mobility of a charged spherical colloidal particle in a solution of
general electrolytes on the basis of an approximation method by [Ohshima et al., J. Chem. Soc. Faraday Trans. 2, 79 (1983) 1613]. Thi
expression, which takes into account the relaxation effects, is applicable for all values of zeta potentiakat (azgeca. 30), where is
the Debye—tickel parameter andis the radius of the particle core.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction for all values ofz. This expression, however, is applicable
only for a particle in a symmetrical electrolyte solution. In
Theories of the electrophoretic mobility of a spherical the present paper we extend Ohshima et al’s mefhdpto
particle of radius: carrying zeta potentidl in an electrolyte the case of a particle in a solution of general electrolytes.
solution of the Debye—tickel parameter were presented by
Smoluchowskj1], Hiickel[2], and Hennjf3]. These theories

are applicable for limiting cases of large [1], small xa 2. Fundamental electrokinetic equations
[2], or low ¢ [3] (see alsd4] and[5]). Full electrokinetic
equations determining of spherical particles with arbitrary Consider a spherical particle of radiwand zeta potential

values ofka and¢ were given independently by Overbeek ¢ moving with a velocityU in a liquid containing a general

[6] and BootH{7]. Wiersema et a[8] solved these equations  electrolyte composed a¥ ionic species with valencg and

numerically. The computer calculation of the electrophoretic bulk concentration (number densitfy, and drag coefficient

mobility was considerably improved by O'Brien and White ;(i=1,2,...,N). The origin of the spherical polar coordinate

[l systemf, 6, ¢) is held fixed at the center of the particle. From
Approximate analytic mobility expressions other than the electroneutrality condition, we have

those in[1-3] were proposed by several authfs7,10—-13]

Two types of approximation methods have been devised to Y

obtain the electrophoretic mobility. In the first method, the Y zn® =0. (1)

electrophoretic mobility is expressed in powers of zeta poten- i=1

tial [6,7,13] while in the second method it is expressed in

powers of 1#a [10-12] In particular, Ohshima et a12]

derived a mobility formula correct to orderxl/ applicable

The main assumptions in our analysis are as follows: (i)
the Reynolds number of the liquid flow is small enough to
ignore inertial terms in the Navier-Stokes equation and the
liquid can be regarded as incompressible; (ii) the applied field

* Tel.: +81 4 7121 3661; fax: +81 4 7121 3661. E is weak so that the particle velocity is proportional to

E-mail address: ohshima@rs.noda.tus.ac.jp. E and terms of higher order ii may be neglected; (iii) the
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slipping plane is located on the patrticle surface-Gt); and
(iv) no electrolyte ions can penetrate the particle surface.
The fundamental electrokinetic equations are given by

NVXVXxu+Vp+pg V=0, (2)

V.-u=0, 3)

vi=u— %Vw, (4)

V(nv;) =0 )
N

p(r) = zieni(r) (6)
i=1

1i(r) = pi + ziey(r) + kT In ni(r), ()

av) =22, ®)

whereg, is the relative permittivity of the electrolyte solu-
tion, g¢ is the permittivity of a vacuunx, is the elementary
electric chargeu(r) is the liquid velocity at positiom, v;

is the velocity of theth ionic speciesp(r) is the pressure,
p(r) is the charge density resulting from the mobile charged
ionic species given by E@6), v(r) is the electric potential,
wi(r) andn;(r) are, respectively, the electrochemical potential
and the concentration (the number density) of theionic
species, angk? is a constant term ip;(r). Egs.(2) and (3)

are the Navier-Stokes equation and the equation of conti-

nuity for an incompressible flow. E¢4) expresses that the
flow v;(r) of theith ionic species is caused by the liquid flow
u(r) and the gradient of the electrochemical potentigk),
given by Eq.(7). Eq. (5) is the continuity equation for the
ith ionic species, and E) is Poisson’s equation. The drag
coefficienti; of theith ionic species is further related to the
limiting conductanceA? of that ionic species by

Nae? |zl

= ,
1 Alo

)
whereN, is Avogadro’s number.

We assume that the slipping plane, at which the liquid
velocity u relative to the particle is zero coincides with the
particle surface at=a (assumption (iii)). Then the above
electrokinetic equations must be solved under the following

boundary conditions.
u=0 atr=a, (10)

(11)

u— —U asr — oo.

In the stationary state the net force acting on the particle or
an arbitrary volume enclosing the particle must be zero. Con-

sider a large sphet®of radiusr containing the particle (plus

the electrical double layer around the particle) at its center.

The radius of S is taken to be sufficiently large so that the
net electric charge withifi is zero. There is then no electric
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force acting orf, and we need consider only hydrodynamic

force Fy, which must be zero, i.e.,

FHz/a'ﬁdS—>0 asr — oo, (12)
S

where the integration is carried out over the surfacg efis

the hydrodynamic stress tensor aha the outward normal

to S. Finally, the boundary condition for the velocity of the
ionic flow v; is given by

v; - fil,—y = 0. (13)

which states that no electrolyte ions can penetrate the particle
surface (assumption (iv)).

3. Linearized equations

Under assumption (ii), we may write

ni(r) = nO@) + oni(r) (14)
y(r) = w“’)(r) +8y(r) (15)

wi(r) = 1 + sui(r) (16)
p(r) = p<°)(r) + 8p(r) (17)

where the quantities with superscript (0) refer to those at
equilibrium, i.e., in the absence £t andMSO) is a constant
independent of.

We assume that the distribution of electrolyte ions at
equilibrium n((r) obeys the Boltzmann equation and the
equilibrium potentialy©)(r) outside the particle satisfies the
Poisson—Boltzmann equation, both being functiongefr|)
only, viz.,

. 5q/,(0)
0 =i exp( -2 (18)
1d LA\ a0 (19)
2a\" Tar )T &r€0
with
(0)
©) () ziey
29) = le (") = ;Z exp( A )
(20)

wherek is Boltzmann’s constant aridlis the absolute tem-
perature. The boundary conditions () are

vO@) = ¢,

vOr) - 0 asr — oo.

(21)

(22)
Further, symmetry considerations permit us to write

u(r) =

Spi(r) =

(—Zh(r)E coso, }g(rh(r))E sin 6, 0) , (23)
r rdr

—ziep;(r)E coso (24)
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