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Abstract

An approximate analytic expression is derived for the electrophoretic mobility of a charged spherical colloidal particle in a solution of
general electrolytes on the basis of an approximation method by [Ohshima et al., J. Chem. Soc. Faraday Trans. 2, 79 (1983) 1613]. This
expression, which takes into account the relaxation effects, is applicable for all values of zeta potential at largeκa (κa ≥ ca. 30), whereκ is
the Debye–Ḧuckel parameter anda is the radius of the particle core.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Theories of the electrophoretic mobilityµ of a spherical
particle of radiusa carrying zeta potentialζ in an electrolyte
solution of the Debye–Ḧuckel parameterκwere presented by
Smoluchowski[1], Hückel[2], and Henry[3]. These theories
are applicable for limiting cases of largeκa [1], small κa
[2], or low ζ [3] (see also[4] and [5]). Full electrokinetic
equations determiningµ of spherical particles with arbitrary
values ofκa andζ were given independently by Overbeek
[6] and Booth[7]. Wiersema et al.[8] solved these equations
numerically. The computer calculation of the electrophoretic
mobility was considerably improved by O’Brien and White
[9].

Approximate analytic mobility expressions other than
those in[1–3] were proposed by several authors[6,7,10–13].
Two types of approximation methods have been devised to
obtain the electrophoretic mobility. In the first method, the
electrophoretic mobility is expressed in powers of zeta poten-
tial [6,7,13], while in the second method it is expressed in
powers of 1/κa [10–12]. In particular, Ohshima et al.[12]
derived a mobility formula correct to order 1/κa applicable
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for all values ofζ. This expression, however, is applicable
only for a particle in a symmetrical electrolyte solution. In
the present paper we extend Ohshima et al’s method[12] to
the case of a particle in a solution of general electrolytes.

2. Fundamental electrokinetic equations

Consider a spherical particle of radiusa and zeta potential
ζ moving with a velocityU in a liquid containing a general
electrolyte composed ofN ionic species with valencezi and
bulk concentration (number density)n∞

i , and drag coefficient
λi (i = 1, 2,. . .,N). The origin of the spherical polar coordinate
system (r, θ,φ) is held fixed at the center of the particle. From
the electroneutrality condition, we have

N∑
i=1

zin
∞
i = 0. (1)

The main assumptions in our analysis are as follows: (i)
the Reynolds number of the liquid flow is small enough to
ignore inertial terms in the Navier-Stokes equation and the
liquid can be regarded as incompressible; (ii) the applied field
E is weak so that the particle velocityU is proportional to
E and terms of higher order inE may be neglected; (iii) the
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slipping plane is located on the particle surface (atr = a); and
(iv) no electrolyte ions can penetrate the particle surface.

The fundamental electrokinetic equations are given by

η∇ × ∇ × u + ∇p+ ρel ∇ψ = 0, (2)

∇ · u = 0, (3)

vi = u − 1

λi
∇µi, (4)

∇(nivi) = 0, (5)

ρ(r) =
N∑
i=1

zieni(r) (6)

µi(r) = µo
i + zieψ(r) + kT ln ni(r), (7)

	ψ(r) = −ρ(r)

εrεo
, (8)

whereεr is the relative permittivity of the electrolyte solu-
tion, εo is the permittivity of a vacuum,e is the elementary
electric charge,u(r) is the liquid velocity at positionr, vi
is the velocity of theith ionic species,p(r) is the pressure,
ρ(r) is the charge density resulting from the mobile charged
ionic species given by Eq.(6), ψ(r) is the electric potential,
µi(r) andni(r) are, respectively, the electrochemical potential
and the concentration (the number density) of theith ionic
species, andµo

i is a constant term inµi(r). Eqs.(2) and (3)
are the Navier–Stokes equation and the equation of conti-
nuity for an incompressible flow. Eq.(4) expresses that the
flow vi(r) of theith ionic species is caused by the liquid flow
u(r) and the gradient of the electrochemical potentialµi(r),
given by Eq.(7). Eq. (5) is the continuity equation for the
ith ionic species, and Eq.(8) is Poisson’s equation. The drag
coefficientλi of the ith ionic species is further related to the
limiting conductanceΛo

i of that ionic species by

λi = NAe
2 |zi|
Λo
i

, (9)

whereNA is Avogadro’s number.
We assume that the slipping plane, at which the liquid

velocity u relative to the particle is zero coincides with the
particle surface atr = a (assumption (iii)). Then the above
electrokinetic equations must be solved under the following
boundary conditions.

u = 0 at r = a, (10)

u → −U as r → ∞. (11)

In the stationary state the net force acting on the particle or
an arbitrary volume enclosing the particle must be zero. Con-
sider a large sphereS of radiusr containing the particle (plus
the electrical double layer around the particle) at its center.
The radiusr of S is taken to be sufficiently large so that the
net electric charge withinS is zero. There is then no electric

force acting onS, and we need consider only hydrodynamic
forceFH, which must be zero, i.e.,

FH =
∫
S

σ · n̂ dS → 0 as r → ∞, (12)

where the integration is carried out over the surface ofS, σ is
the hydrodynamic stress tensor andn̂ is the outward normal
to S. Finally, the boundary condition for the velocity of the
ionic flow vi is given by

vi · n̂|r=a = 0. (13)

which states that no electrolyte ions can penetrate the particle
surface (assumption (iv)).

3. Linearized equations

Under assumption (ii), we may write

ni(r) = n
(0)
i (r) + δni(r) (14)

ψ(r) = ψ(0)(r) + δψ(r) (15)

µi(r) = µ
(0)
i + δµi(r) (16)

ρ(r) = ρ(0)(r) + δρ(r) (17)

where the quantities with superscript (0) refer to those at
equilibrium, i.e., in the absence ofE, andµ(0)

i is a constant
independent ofr.

We assume that the distribution of electrolyte ions at
equilibrium n(0)(r) obeys the Boltzmann equation and the
equilibrium potentialψ(0)(r) outside the particle satisfies the
Poisson–Boltzmann equation, both being functions ofr (=|r|)
only, viz.,

n
(0)
i = n∞

i exp

(
−zieψ

(0)

kT

)
, (18)

1

r2

d

dr

(
r2

dψ(0)

dr

)
= −ρ

(0)
el (r)

εrεo
, (19)

with

ρ
(0)
el (r) =

N∑
i=1

zien
(0)
i (r) =

N∑
i=1

zien
∞
i exp

(
−zieψ

(0)

kT

)
,

(20)

wherek is Boltzmann’s constant andT is the absolute tem-
perature. The boundary conditions forψ(0)(r) are

ψ(0)(a) = ζ, (21)

ψ(0)(r) → 0 as r → ∞. (22)

Further, symmetry considerations permit us to write

u(r) =
(

−2

r
h(r)E cosθ,

1

r

d

dr
(rh(r))E sin θ,0

)
, (23)

δµi(r) = −zieφi(r)E cosθ (24)
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