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Abstract  This paper analyses three popular methods simulating granular flow at different time and length scales: 
discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models 
of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to 
study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular 
flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can 
be obtained by use of such computational method as FEM. However, this approach depends on the constitutive rela-
tionship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and 
averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials 
and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of 
granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of parti-
cles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles. 
Further work is needed to develop an appropriate approach to overcome these problems. 
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1. Introduction 
The dynamic behavior of granular materials is very 

complicated. As with solids, they can withstand deforma-
tion and form heaps; as with liquids, they can flow; as with 
gases, they exhibit compressibility. These features give 
rise to another state of matter that is poorly understood (de 
Gennes, 1999). Corresponding to the fluid- and solid-like 
modes, different regimes have been identified in the past: 
quasi-static regime, rapid flow regime and a transitional 
regime that lies in between. To describe the flow behavior 
in these regimes, different approaches at different time and 
length scales have been developed in the past. Generally 
speaking, they can be categorize into two length scales: 
microscopic and macroscopic. At a microscopic or particle 
scale, granular material is a discrete system whose 
physical properties are discontinuous with respect to posi-
tion and time. On the other hand, at a macroscopic or bulk 
scale, granular material is a continuum system whose 
physical properties are continuous. Based on such con-
siderations, different approaches have been proposed to 
describe granular material at the two distinct scales. 

An important simulation approach which can describe 
granular flow at a particle scale is the so-called discrete 
element method (DEM) originally developed by Cundall 
and Strack (1979). The method considers a finite number 
of discrete interacting particles, and every particle in the 
considered system is described by Newton’s equations of 
motion related to translational and rotational motions. The 
motion of every particle is traced and the gradients of 
translation and rotation of a particle are determined in 
terms of the forces and the torques exerted on it. 

DEM-based simulation has been used to study the physics 
of granular materials (e.g., Herrmann & Luding, 1998; Ki-
shino, 2001; Zhu et al., 2004), and applied to investigate 
various engineering problems such as mixing (Wightman 
et al., 1998; Stewart et al., 2001), grinding/granulation 
(Yamane et al., 1998; Yang et al, 2003) and hopper flow 
(Ristow, 1992; Langston et al., 1995a; Zhu & Yu, 2004). 

By use of a proper averaging procedure, the discrete 
system considered above can be transferred into a corre-
sponding continuum system. Extensive research has been 
carried out to develop such averaging methods. The 
methods thus far proposed can be divided into three 
classes: volume average (Drescher & de Josselin de Jong, 
1972; Rothenburg & Selvadurai, 1981), time-volume av-
erage (Walton & Braun, 1986; Zhang & Campbell, 1992) 
and weighted time-volume average (Babic, 1997; Zhu & Yu, 
2002). Based on a proper averaging method, the macro-
scopic quantities such as density, velocity and stress can 
be obtained in terms of the microscopic quantities such as 
velocities of particles, and interaction forces and torques 
between particles. The combined approach of DEM and 
averaging method has been applied to the macro-dy-
namical analysis of granular flows (e.g., Langston et al., 
1995a; Potapov & Campbell, 1996; Zhu & Yu, 2005b), and 
has been used to study the intrinsic characteristics of 
granular materials such as the constitutive relationship 
under various flow conditions (Oda & Iwashita, 2000; 
Alonso-Marroquin & Herrmann, 2005). 

Granular material can also be modeled by continuum 
approach on a macroscopic scale. In the continuum ap-
proach, the macroscopic behavior of granular flow is de-
scribed by the balance equations facilitated with constitu-
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tive relations and boundary conditions. In the past, two 
continuum models developed based on the plasticity the-
ory and kinetic theory of molecular dynamics have exten-
sively been used to study the dynamic behavior of granular 
materials (Lun et al., 1984; Campbell, 1990; Nedderman, 
1992). They have been illustrated to be applicable to 
quasi-static and rapid flow regimes, respectively. Recently, 
these approaches have also been developed to study 
granular flows in the transitional regime. An important 
method is the viscous, elastic-plastic continuum model. It 
has been extensively applied to various cases (e.g., Wu, 
1990; Oda & Iwashita, 2000). 

This paper analyses the three popular methods simu-
lating granular flows at a microscopic and macroscopic 
scales: discrete element method, averaging method and 
viscous, elastic-plastic continuum model. The mathemati-
cal models of these methods and their applications to 
hopper flows are considered. The advantages and disad-
vantages involved in the theories and applications of these 
methods are discussed. 

2. Mathematical Models 
2.1 Discrete element method 

In the DEM simulation, a granular material is modeled 
based on a finite number of discrete, semi-rigid spherical 
or polygon shaped particles interacting by means of con-
tact or non-contact forces, and the translational and rota-
tional motions of every single particle in a considered sys-
tem are described by Newton’s laws of motion. For sim-
plicity, our present study is limited to coarse spherical par-
ticle systems in which the effect of interstitial fluid and 
non-contact forces such as the van der Waals and electro-
static forces can be ignored. Therefore, the governing 
equations for translational and rotational motion of particle i 
can be given by  
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The most complicated issue with this method is probably 
the calculation of the interaction forces and torques be-
tween particles. Various approaches have been proposed 
to model the interparticle forces. One of the most popular 
force models is developed based on the consideration of 
contact elastic force and viscous contact damping force 
(Langston et al., 1995a; Tanaka et al., 2002; Zhu & Yu, 
2003). In general, the total interaction force between parti-
cles can be expressed as a normal component and a tan-
gential one. The normal force includes elastic and damping 
components. The tangential force is described by static 
and dynamic frictions. Prior to the relative sliding of the 
contacting particles, the tangential force is described by the 
static force including two components corresponding to the 
normal elastic and damping forces respectively. When 
particles at contact start to slide relatively, the tangential 

force is described by the dynamic friction, usually, given by 
the Coulomb friction model. The contact between two par-
ticles is not a single point but is a finite area due to the 
deformation of both particles. The interparticle forces act 
over the contact region between particles rather than the 
mass centre of the particles, and they will generate a 
torque. The total torque includes two parts. One of the two 
parts, causing particle i to rotate, is contributed by the 
tangential components of the traction distribution. Another, 
often referred to as the rolling friction torque, is contributed 
by the asymmetrical normal components of the traction 
distribution. It provides a resistance to relative rolling mo-
tion between particles. Based on the forms of their stiffness 
parameters, the force models can be divided into two 
classes: linear model and nonlinear model. It is still open 
for discussion which model is better. The detailed equa-
tions about the nonlinear model for spherical particles are 
listed in Table 1. 

Table 1  Equations for the calculation of interparticle force and torque 

Force and torque Equations 
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To track the evolution of the positions of particles, their 
initial positions and velocities are first given. The initial 
information is then used to calculate the interparticle forces 
and torques for each contact by means of the force and 
torque models listed in Table 1. Solving Eqs. (1) and (2) by 
use of a numerical scheme gives new positions and ve-
locities of these particles at time Δt. The time step, Δt, 
should be set smaller than a certain critical value 
(Langston et al, 1995b). Using the new particle positions 
and velocities, the calculation cycle is repeated in the next 
time step. Therefore, the evolution of the position of each 
particle can be determined. 

2.2 Averaging method 
By use of a proper averaging procedure, the discrete 

system considered above can be transferred into a corre-
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