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Drag force acting on a bubble in a cloud of compressible spherical
bubbles at large Reynolds numbers
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Abstract

We have derived the expressions for the viscous forces acting on a bubble in a cloud of bubbles by using the approach by
Levich. To obtain the dissipation function, an approximate expression for the velocity potential calculated previously by the
authors up to orderβ3 has been used. Hereβ = b̄/d is a small dimensionless parameter,b̄ is the mean bubble radius andd is
the mean distance between bubbles.
 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Levich [1] calculated the drag force acting on a bubble moving through a liquid at large Reynolds and small Weber numbers
(the last condition guarantees that the bubble shape is spherical) defining the total viscous dissipation through the velocity
potential of irrotational flow (see also Moore [2] and Batchelor [3]). With the use of this approach, he obtained the drag force
F in a translational motion of a bubble of unchanged radius

F = 12πµbU. (1)

It differs from the drag force given by the theory of viscous potential motions. In the last method, the viscous flow is supposed
to be potential, and the viscosity is taken into account only in the dynamic condition expressing the continuity of the normal
stress at the gas–liquid interface (Moore [4], see also Joseph and Wang [5]). The corresponding drag force is then

F = 8πµbU.

Hereµ is the dynamic viscosity of the fluid,U is the bubble velocity, andb is the bubble radius. Moore [2] justified further the
approach by Levich by developing of the model of the boundary layer wrapped around bubble. Moreover, recently Magnaudet
and Legendre [6] calculated the drag force on a spherical compressible bubble by using the full Navier–Stokes equations. In
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particular, they found that the Levich formula (1) is valid not only in the high-Reynolds limit, but also for moderate and even
small Reynolds numbers, provided the bubble pulsation velocity is high with respect to the flow velocity.

Both approaches, the method of dissipation function and the method of viscous potential motions, give the same result if we
calculate the viscous forces on an oscillating bubble without translational motion (the Rayleigh–Plesset equation):
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Hereρ is the fluid density,pg (b) is the pressure in a bubble (it is a given function ofb), andp∞ is the fluid pressure at infinity.
The Levich approach allows to apply the Lagrange formalism for constructing the governing equations of motion with non-

potential forces derived from the Rayleigh dissipation function method (see, for example, Goldstein, Poole and Safko [7]). More
exactly, if we consider a bubble of radiusb(t) oscillating with the velocitys(t) = db/dt whose center position isr(t) and the
translational velocityv(t) = dr(t)/dt , the equations of motion are (Voinov and Golovin [8]):
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Eqs. (3) imply the energy equation in the form
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HereL is the Lagrangian of the system,Φ is the Rayleigh dissipation function. In the case of a massless bubble, the Lagrangian
is

L = πρb3

3
|v|2 + 2πρb3s2 − ε(τ ).

Here

ε(τ ) =
∞∫
τ

pg(z)dz + p∞τ

is the internal energy of the gas–liquid system,τ = 4πb3/3 is the bubble volume. The dissipation functionΦ can be explicitly
calculated for the velocity potential of the flow around a single bubble:
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It is given by
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HereB is a region occupied by the bubble,Γ = ∂B is the bubble boundary,D = (∂u/∂x + (∂u/∂x)T)/2 is the rate of defor-
mation tensor,u = ∇ϕ, n is the normal vector toΓ directed to the fluid. System (3) can be rewritten in the following equivalent
form:
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The general case ofN interacting rigid bubbles was considered first by Golovin [9]. For a dilute bubbly mixture, he derived
the equations of motion as well as the friction forces (by using Levich’s approach) up to orderβ3. Hereβ = b̄/d is a small
parameter which is the ratio of the mean bubble radiusb̄ to the mean distanced between bubbles. Obviously, 4πβ3/3 is the
volume fraction of bubbles in the limitN → ∞. Kok [10,11] (and references therein), studied analytically and experimentally
the dynamics of a pair of rigid bubbles of equal radii. In particular, he derived the equations of motion up to any order ofβ.
Sangani and Didvania [12] and Smereka [13] examined the dynamics ofN bubbles numerically. In particular, they showed that



Download English Version:

https://daneshyari.com/en/article/9690587

Download Persian Version:

https://daneshyari.com/article/9690587

Daneshyari.com

https://daneshyari.com/en/article/9690587
https://daneshyari.com/article/9690587
https://daneshyari.com

