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Abstract

In porous media isothermal flow a transition from the Darcy regime, via an inertia dominated regime, towards tur-

bulence is anticipated. In porous medium natural convection the transition to turbulence follows a different route. The

first transition from a motionless-conduction regime to steady natural convection is followed by a direct second tran-

sition to a non-steady (time dependent) and non-periodic regime (referred to as weak turbulent), prior to the amplitude

of the convection reaching such large values as to involve inertial, non-Darcy effects. The latter is due to an additional

non-linear interaction that appears in natural convection as a result of the coupling between the equations governing

the fluid flow and the energy equation. The present paper deals with identifying whether the transitions are sudden or

possibly smooth. The latter is accomplished by using a truncated Galerkin representation of the natural convection

problem in a porous layer heated from below (an extended Darcy model) leading to the familiar Lorenz equations

for the evolution of the convection amplitudes with time. Two different formulations (named the ‘‘original’’ and the

‘‘modified’’ systems) are being used in an anticipation to obtaining a smooth transition in the form of an imperfect

bifurcation from the ‘‘modified’’ system formulation. The results show that the transition remains sudden and the accu-

racy of the ‘‘modified’’ system results is being tested in comparison with the ‘‘original’’ system showing a sufficiently

high degree of accuracy.
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1. Introduction

In porous medium natural convection the transition

to turbulence follows the following route. The first tran-

sition is from a motionless-conduction regime to steady

natural convection. This is followed by a direct second

transition to a non-steady (time dependent) and non-

periodic regime (referred to as weak turbulent), prior

to the amplitude of the convection reaching such large

values as to involve inertial, non-Darcy effects. The lat-

ter is due to an additional non-linear interaction that ap-

pears in natural convection as a result of the coupling

between the equations governing the fluid flow and the

energy equation.
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Modeling the weak turbulent regime for natural con-

vection in a fluid saturated porous layer is known to be

extremely sensitive to initial conditions. The question of

compatibility of the initial conditions between the com-

putational and analytical (weak non-linear) solutions

arises in particular in connection with the prediction of

the transition point. Vadasz and Olek [1,2] demon-

strated by using a computational method of solution

(Adomian�s decomposition method [3–5]) that the

transition from steady to chaotic (weak-turbulent) con-

vection in porous media can be recovered from a trun-

cated Galerkin approximation which yields a system

that is equivalent to the familiar Lorenz equations (Lor-

enz [6], and Sparrow [7]). In particular it was noticed

that the transition to chaos occurs at a particular sub-

critical value of Rayleigh number. Here, the term

‘‘sub-critical’’ is used in the context of the transition

from steady convection to a non-periodic state, typically

referred to as chaotic, and the critical value of the Ray-

leigh number is the value at which this transition to

chaos is predicted by the linear stability analysis of the

convective steady state solutions. The problem that the

linear stability analysis reveals that the transition occurs

at Rayleigh number values substantially smaller than

those obtained by accurate numerical solutions (or by

experimental results of an equivalent system that is gov-

erned by the same set of Lorenz equations, Yuen and

Bau [8] and Wang et al. [9]) and in some cases at values

smaller by 50% was addressed by Vadasz [10]. The latter

showed that an analytical, weak non-linear, method of

solution to this problem, can provide accurate transition

values via a correction to the linear stability results. In

addition, Vadasz [10] revealed a mechanism for the well

known Hysteresis phenomenon in the transition from

steady to chaotic convection and backwards. The transi-

tion from the steady to the chaotic solution occurs via a

subcritical Hopf bifurcation (see Sparrow [7], Yuen and

Bau [8] and Wang et al. [9], Vadasz [10,11]) and is asso-

Nomenclature

Da Darcy number, defined by k�=H2
�

H
*

the height of the layer

H the front aspect ratio of the porous layer,

equals H
*
/L

*

k
*

permeability of the porous domain

L
*

the length of the porous layer

L reciprocal of the front aspect ratio, equals

1/H = L
*
/H

*

Mf ratio of the fluid and the porous domain

heat capacities

p reduced pressure (dimensionless).

Pr Prandtl number, equals m
*
/ae*

Ra porous media gravity related Rayleigh num-

ber, equals b
*
DTCg*H*

k
*
Mf/ae*m*

Ra0 critical Rayleigh number value for loss of

stability of the steady convection solution

R scaled Rayleigh number, equals Ra/4p2

R0 critical value of R for the loss of linear sta-

bility of the steady convection solution

r absolute value of the complex amplitude

r0 initial condition of r

t time

T dimensionless temperature, equals

(T
*
� TC)/(TH � TC).

TC coldest wall temperature

TH hottest wall temperature

u horizontal x component of the filtration

velocity

v horizontal y component of the filtration

velocity

w vertical component of the filtration velocity

x horizontal length co-ordinate

X amplitude of convection flow defined in Eq.

(6)

y horizontal width co-ordinate

Y amplitude of convection temperature

defined in Eq. (7)

z vertical co-ordinate

Z amplitude of convection defined in Eq. (7)

Greek symbols

a a parameter related to the time derivative

term in Darcy�s equation
ae

*
effective thermal diffusivity

b
*

thermal expansion coefficient

e asymptotic expansion parameter, see text

following Eq. (17)

/ porosity

v dimensionless group, equals /Pr/Da

m
*

fluid�s kinematic viscosity

l
*

fluid�s dynamic viscosity

w stream function

DTC characteristic temperature difference

s long time scale

h the phase of the complex amplitude

Subscripts

* dimensional values

t transitional values

cr critical values

Superscript
* complex conjugate
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