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Mol solution for transient turbulent flow in a heated pipe✩
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Abstract

A computational fluid dynamics (CFD) code, based on direct numerical simulation (DNS) and method of lines (MOL) approach previously
developed for the prediction of transient turbulent, incompressible, confined non-isothermal flows with constant wall temperature was applied
to the prediction of turbulent flow and temperature fields in flows dominated by forced convection in circular tubes with strong heating.
The code was parallelized in order to meet the high grid resolutions required by DNS of turbulent flows. Predictive accuracy of the code
was assessed by validating its steady state predictions against measurements and numerical results available in the literature. Favorable
comparisons obtained reveal that the code provides an efficient algorithm for DNS of non-isothermal turbulent flows.
 2005 Elsevier SAS. All rights reserved.
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1. Introduction

Continuous advances in large scale computers, numeri-
cal methods and post-processing environments over the past
two decades have led to the application of Direct Numerical
Simulation (DNS), which is the most accurate and straight-
forward technique, to the prediction of turbulent flow fields.
However due to the fact that fine space and time resolutions
are needed for DNS, both accurate and efficient numerical
techniques and high performance computers are required for
the simulation in short computation time. The former can
be achieved by increasing the order of spatial discretiza-
tion method, resulting in high accuracy with less grid points,
and using not only highly accurate but also a stable numer-
ical algorithm for time integration. The method of lines, the
superiority of which over finite difference method had al-
ready been proven [1], is an alternative approach that meets
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this requirement for the time dependent problems. The lat-
ter requirement is met by either supercomputers or parallel
computers which require efficient parallel algorithms.

In the MOL approach, the system of partial differential
equations (PDEs) is converted into an ordinary differential
equation (ODE) initial value problem by discretizing the
spatial derivatives together with the boundary conditions us-
ing a high order scheme and integrating the resulting ODEs
using a sophisticated ODE solver which takes the burden
of time discretization and chooses the time steps in such a
way that maintains the accuracy and stability of the evolv-
ing solution. The most significant advantage of MOL ap-
proach is that it has not only the simplicity of the explicit
methods but also the superiority of the implicit ones unless
a poor numerical method for the solution of the ODEs is
employed. MOL has been used extensively to solve PDEs
since its first appearance in the former Soviet Union in
1930 and has been successfully applied to the solution of
Navier–Stokes equations in both vorticity-stream function
and primitive variables form. Considering the emphasis on
the prediction of transient turbulent flows, a new CFD code
satisfying the abovementioned requirements was recently
developed for the DNS of 2D incompressible separated in-
ternal flows in regular and complex geometries. The code
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Nomenclature

cp specific heat capacity . . . . . . . . . . . cm2·K−1·s−2

D diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cm
g gravitational acceleration . . . . . . . . . . . . . cm·s−2

i grid index inr direction
j grid index inz direction
k thermal conductivity . . . . . . . . . . gr·cm·s−3·K−1

L length of the pipe . . . . . . . . . . . . . . . . . . . . . . . . cm
ṁ mass flow rate. . . . . . . . . . . . . . . . . . . . . . . . gr·s−1

NR number of grid points inr direction
NZ number of grid points inz direction
p pressure . . . . . . . . . . . . . . . . . . . . . . . gr·cm−1·s−2

q+ dimensionless heating rate
r distance in radial direction . . . . . . . . . . . . . . . cm
Re Reynolds number
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
tp user defined print time . . . . . . . . . . . . . . . . . . . . . s
�t time step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u axial component of the velocity . . . . . . . cm·s−1

v radial component of the velocity . . . . . . cm·s−1

z distance in axial direction . . . . . . . . . . . . . . . . cm

Greek letters

ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . gr·cm−3

ν kinematic viscosity . . . . . . . . . . . . . . . . . cm2·s−1

φ dependent variable transformed into 1D array

Subscripts

in inlet
max maximum
NEQN number of equations
w wall

Superscripts

n present time level

uses the MOL approach in conjunction with (i) an intel-
ligent higher-order multidimensional spatial discretization
scheme which chooses biased-upwind and biased-downwind
discretization in a zone of dependence manner (ii) a par-
abolic algorithm which removes the necessity of iterative so-
lution on pressure and solution of a Poisson type equation for
the pressure (iii) an elliptic grid generator using body-fitted
curvilinear coordinate system for application to complex
geometries. Predictive accuracy of the code was assessed
on various laminar and turbulent isothermal flow problems
by validating its predictions against either measurements or
numerical results available in the literature [2,3]. Favorable
comparisons were obtained on these isothermal problems.
First application of the code to a non-isothermal problem
was the simulation of flow and temperature fields of a sud-
denly started laminar flow in a pipe with sudden expansion
with hot wall at uniform temperature [4]. Although the re-
sults showed expected trends, validation of the code was not
possible due to the absence of data.

Considering the interest in numerical simulation of tran-
sient turbulent non-isothermal flows in advanced power re-
actors, gas turbines, heat exchangers etc., the predictive
accuracy of the code is tested by applying it to the simu-
lation of turbulent, non-isothermal, axisymmetric flow of air
through a strongly heated pipe for which experimental data
are available on two entry Reynolds numbers and three dif-
ferent heating rates yielding conditions considered to be tur-
bulent, sub-turbulent and laminarizing [5]. In order to meet
the extensive grid requirement of DNS of turbulent flows,
the code was parallelized by using domain decomposition
strategy. To the authors’ knowledge, a parallel implemented
DNS code based on MOL for turbulent non-isothermal flows
is not available to date.

2. Governing equations

The Navier–Stokes equations for transient two-dimen-
sional incompressible non-isothermal flows in cylindrical
coordinates are as follows:
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energy:
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