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Abstract

We show how to formulate two-point boundary-value problems in order to compute fully-developed laminar channel and tube flow profiles for
viscoelastic fluid models. The formulation is applied to Couette and pressure-driven flows separately, or a combination of both. The application of
this methodology is illustrated analytically for the Upper-Convected Maxwell Model, and it is applied computationally for the Phan-Thien/Tanner
and Giesekus Models. Numerical solutions exist for the last two models [J.Y. Yoo, H.C. Choi, On the steady simple shear flows of the one-mode
Giesekus fluid, Rheol. Acta 28 (1989) 13–24; P.J. Oliveira, F.T. Pinho, Analytical solution for fully developed channel and pipe flow of Phan-
Thien–Tanner fluids, J. Fluid Mech. 387 (1999) 271–280; M.A. Alves, F.T. Pinho, P.J. Oliveira, Study of steady pipe and channel flows of a
single-mode Phan-Thien–Tanner fluid, J. Non-Newtonian Fluid Mech. 101 (2001) 55–76], allowing verification of the computational technique.
Subsequently, the computational algorithm is applied to the constant-volume polymer blend models of Maffettone and Minale [P.L. Maffettone, M.
Minale, Equation of change for ellipsoidal drops in viscous flow, J. Non-Newtonian Fluid Mech. 84 (1999) 105–106 (Erratum), J. Non-Newtonian
Fluid Mech. 78 (1998) 227–241] and Dressler and Edwards [M. Dressler, B.J. Edwards, The influence of matrix viscoelasticity on the rheology of
polymer blends, Rheol. Acta 43 (2004) 257–282; M. Dressler, B.J. Edwards, Rheology of polymer blends with matrix-phase viscoelasticity and
a narrow droplet size distribution, J. Non-Newtonian Fluid Mech. 120 (2004) 189–205]. Rheological and morphological properties of the model
blends are thus obtained as functions of the spatial position within the channel, applied pressure drop, and shear rate at the wall.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The processing of polymer blends is a critical issue in the
plastics industry, since the mechanical properties of the finished
product are greatly impacted by the deformational and thermal
histories of the specific process. In the past decade, the Doi/Ohta
[7] model was developed to describe the rheological and mor-
phological properties of polymer blends under isothermal flow
conditions. Very recently, the need for blend models to con-
serve volume of the dispersed (droplet) phase was recognized,
and new models have since been developed which guarantee the
satisfaction of this constraint[4–6,8,9].

The models mentioned in the preceding paragraph can be
quite complicated, incorporating different physical processes
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in the governing set of evolution equations. For example, terms
appear in the dynamical equations that describe the interaction
of matrix-phase viscoelasticity with the morphology of the
dispersed phase, and vice-versa. Due to this complexity, to
date most examinations of this model behavior have studied
only homogeneous shear fields, either under steady-state
conditions, or start-up and cessation of homogeneous shear
flow behavior. To be useful in real process simulations,
techniques must be developed that can deal with the addi-
tional complexities of these models in inhomogeneous flow
fields.

Of course, computational viscoelastic fluid mechanics is a
mature field, wherein many different types of rheological con-
stitutive equations have been tested in inhomogeneous flow
fields relevant to the polymer processing industry. Many differ-
ent techniques have been developed for performing these sim-
ulations. However, because of the additional complexity of the
constant-volume polymer blend models, applying most of these
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approaches to these new models is extremely demanding heuris-
tically, although conceptually similar in principle.

In this article, we are going to strike down a middle road
between the relative ease of use of the homogeneous shear
calculations, and the overriding complexity of sophisticated
inhomogeneous shear field calculations. In homogeneous
calculations, one typically uses Newton’s method for steady-
state computations, and a Runge–Kutta method for transient
calculations. Both methods are fairly simple to implement, even
for complicated models such as those that concern us here. We
would like very much to keep the complexity of our inhomoge-
neous calculations on the same level as this. Of course, doing
so requires a compromise, and something must be given up to
compensate for our requirement concerning ease of use.

Herein, we consider steady-state, fully developed, laminar,
Couette and pressure-driven flows of polymer blends down chan-
nels or tubes. Thus we give up the ability to study start-up effects,
entrance/exit effects, etc., but gain the ability to compute flow,
rheological, and morphological profiles for the model blends
under these restricted conditions. One should not think, there-
fore, that the results of the calculations would be uninteresting:
as shown below, blend models exhibit much more interesting
behavior than the typical results generated by most viscoelastic
fluid models, solved under the same conditions.

The method that we use here is to adapt a Two-Point
Boundary-Value (TPBV) Technique[10] to the complexities
of constant-volume polymer blend models undergoing the flow
processes described in the preceding paragraph. As will be
demonstrated below, this is not more difficult than applying
Newton’s method or a Runge–Kutta method to a homogeneous
shear-flow problem; however, some initial methodological
issues must be overcome to apply the TPBV Technique to
viscoelastic fluids. Nevertheless, the basic idea behind this com-
putational scheme has been used in prior stability analyses of
laminar channel flow of viscous fluids heated from below[11].

Fortunately, much work has been done in the past to solve
various rheological models for the viscometric flows consid-
ered herein: e.g., Schleiniger and Weinacht[12,13] solved
the boundary-value problem for the Giesekus Model, and in
Refs.[2,3,14,15]analytical solutions for the Phan-Thien/Tanner
(PTT) Model can be found. These past efforts allow us the op-
portunity to test the technique used herein for accuracy using
the much simpler (relative to the constant-volume blend mod-
els) viscoelastic fluid constitutive equations.

In the remainder of this article, we first work out the theoret-
ical framework for expressing constitutive equations for imple-
mentation in the TPBV methodology developed herein. This is
not difficult, and merely means that we need to re-express the
viscoelastic constitutive equations used as test cases in terms of
an internal microstructural variable instead of the extra stress
tensor. We do this because the more complicated polymer blend
models are expressed in terms of microstructural variables, and
cannot easily (or even with great difficulty) be rewritten in terms
of the extra stress tensor. After this, we provide an overview of
the theoretical concepts involved in using the TPBV technique.
These are subsequently illustrated analytically by solving the
Upper-Convected Maxwell Model (UCMM) in a channel under

simultaneous Couette and pressure-driven flow. Following this,
the methodology is applied computationally to generate velocity
and stress profiles under the same flow condition for the Phan-
Thien/Tanner (PTT)[16] and Giesekus[17,18] Models. These
profiles are then compared with solutions for the same models
available in the literature. Afterwards, the TPBV methodology
is applied to two constant-volume polymer blend models, and
the somewhat surprising results are discussed.

2. Theoretical background and problem formulation

For the purpose of the present article, the physical variables
that describe the system,x, are the velocity vector field,v and
one or more internal variables,X, which are either contravariant
second-rank tensors or scalars: hencex = [v, X]. At present,
the variablesX are left unspecified because they change with
the different models to be discussed in the subsequent sections.
Furthermore, the variablesX can be unconstrained or obey a
scalar constraint that is expressed in terms of the scalar invariants
of the microstructural variables[19].

The generic forms of the evolution equations for this variable
set are

ρ
∂vα

∂t
= −ρvβ∇βvα − ∇αp + ∇βσαβ, (1)

∂Xαβ

∂t
= ∂Xαβ

∂t

∣∣∣∣
cons

+ ∂Xαβ

∂t

∣∣∣∣
diss

, (2)

where we have assumed thatX is a second-rank tensorial vari-
able and we have introduced the Einstein summation convention
over repeated indices. Eq.(1) is the Cauchy momentum equa-
tion, where the pressure, constant mass density, and the extra
stress tensor have been denoted withp, ρ, andσ, respectively.
Note that in this formulation, the extra stress tensor is a known
function of X, dependent on the particular model under inves-
tigation. The first term on the right-hand side of Eq.(1) is the
nonlinear convective term, the second one represents the neg-
ative pressure gradient, and the last one is the divergence of
the extra stress tensor field. Eq.(2) is a general representation
of the microstructural dynamics. The first term on the right-
hand side of Eq.(2) represents the reversible contribution to the
microstructural-dynamics (note that the termv · ∇X is included
in this term), whereas the second term is the irreversible con-
tribution. Both of these terms are typically specified explicitly
in polymer blends models, but need to be inferred for typical
viscoelastic fluid models. This is easily accomplished following
methodology described by Beris and Edwards[20].

In the present article, we wish to solve the continuum Eqs.(1)
and (2)for a superposition of Couette flow with plane pressure-
driven (Poiseuille) flow. Tube flow is considered in the appendix.
Therefore, the dynamical equations will be solved numerically
to match prescribed boundary conditions on the channel walls.
Here, we want to assume no-slip boundary conditions to be im-
posed on the velocity field at the channel walls. Mathematically,
this is a two-point boundary-value problem. The methodology
to solve the boundary value problem is straightforward and com-
puter algorithms are available (cf., e.g.,[10]). However, it is not
immediately obvious how to manipulate the continuum Eqs.(1)
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