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Abstract

There is now in the literature a number of mathematical models of the effects of flow on crystallization of polymers, and here we compare
the performance of various models in slow simple shearing and sinusoidal strain (oscillatory) flows. We compare the model predictions to
the experiments of Wassner and Maier [E. Wassner, R.-D. Maier, Shear-induced crystallization of polypropylene melts. in: D.M. Binding,
et al. (Ed.), Proceedings of the XIII International Congress on Rheology, Cambridge, 2000, pp. 1–183] on isotactic polypropylene. Both the
Kolmogorov [A.N. Kolmogorov, On the statistics of the crystallization process on metals. Bull. Akad. Sci. USSR, Class Sci., Math. Nat. 1
(1937) 355–359] and Nakamura et al. [K. Nakamura, T. Watanabe, K. Katayama, T. Amano, Some aspects of non-isothermal crystallization
of polymers I, J. Appl. Polym. Sci. 16 (1972) 1077–1091] crystallinity formulations are discussed, and the advantages of the former are
emphasized. For the cases considered, we see that strain-based crystallinity enhancement formulations appear to give results close to the
experiments at the low flow rates which were studied, although they have some drawbacks. Several other ideas also lead to acceptable results;
a new formulation based on both strain and strain-rate appears to give the best overall fit.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The prediction of the impact of flow on crystallization,
and the impact of crystallization on flow, are of great practi-
cal interest, and a considerable literature on the subject now
exists. Reviews by Keller and Kolnaar[4], Eder et al.[5] and
Eder and Janeschitz-Kriegl[6] are helpful. In the present pa-
per, we shall mainly concentrate on shearing flows, and in
this case several theories of crystallization enhancement by
flow have been proposed. Eder and Janeschitz-Kriegl[6] dis-
cussed strain-rate driven enhancement; Keller and Kolnaar
[4] proposed strain enhancement; Doufas et al.[7] discussed,
in the context of melt-spinning, the effect of the trace of the
stress tensor; Ziabicki et al.[8] suggested (in melt-spinning)
that the normal stress difference (N1) was important; Zheng
and Kennedy[9] considered the change in dumbbell free en-
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ergy induced by flow; Zuidema et al.[10] investigated a the-
ory based on recoverable strain, and Janeschitz-Kriegl[11]
suggested a work input criterion. This list does not contain
every published paper, but we believe it does contain repre-
sentatives of the main types of explanations on offer. Some
arguments purport to relate molecular theories to ‘macro-
scopic deformation’; here, we shall avoid such arguments and
only consider macroscopic measurable parameters. From the
above, we see that there does not seem to be a consensus of
opinion on the cause of flow-induced crystallization.

There are also several viewpoints on the way crystal-
lization affects rheology. Doufas et al.[7] consider that the
stresses in the rigid (crystalline) phase plus the stresses in
the amorphous phase simply add up; Tanner[12,13]has ex-
pressed doubts about this addition; he proposed a suspension-
based theory whereby “rigid” crystals are embedded in an
amorphous matrix, and showed that a more complex stress
calculator was then essential. Zheng and Kennedy[9] and
Ziabicki et al.[8] also used types of suspension theory. Here,
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we assume that the amorphous matrix properties are known;
this is the simplest assumption. Further developments of the
theory may need more complex assumptions (for example,
gelling) but they are not considered here. In the present pa-
per, where various theories will be compared, in the first in-
stance, to the slow shear flows discussed by Wassner and
Maier[1], we will adopt a simple suspension model of crystal-
lizing rheology, to be detailed below. The advantage of using
the Wassner–Maier experiments is that the complexity due
to varying temperature is avoided; also, they deal with iso-
tactic polypropylene (i-PP), which, as a common injection-
moulding material, is well studied.

The aim of this paper is thus to apply all seven of the
above-mentioned “causes” of enhanced crystallization to a
simple rheological model and compare the results to the
Wassner–Maier experiments.

2. Crystallization and flow

The basic equation of Kolmogorov[2] for the crystallinity
fractionα is

α = 1 − exp(−αf ) (1)

where

αf = Cm

∫ t

0
Ṅ(s)

[∫ t

s

G(u) du

]m
ds (2)

Here,m is assumed to be a constant number denoting the
dimensionality of the crystallites: in the original form for
spherical crystals (Kolmogorov[2], Avrami [14]), m= 3, and
the constantCm = 4π/3. Generally, one findsm= 1–3, and it
is not necessarily an integer.

Ṅ(t) is the rate of increase of number of nuclei in the
crystallization process, andG(t) is the linear rate of growth
(distance/time) of the crystals.

We shall assume:

N = N0 + Nf (3)

whereN0 is the number of existing nuclei at the beginning of
the process (t = 0) andNf is the number of nuclei created by
the flow.N0 is a function of temperature[6]. Monasse[15]
has investigated crystal growth rates under shear in polyethy-
lene. Growth rates vary linearly with shear rates in the range
0–4 s−1; modest variations (∼20% increase) arise for shear
rates 0–0.5 s−1, which is the range of interest here. Following
this work and related investigations by Koscher and Fulchi-
ron [16] we shall assume thatG is a function of temperature
only, and is not affected by the flow. However, it has been
found by numerous workers (e.g. Eder and Janeschitz-Kriegl
[6]) thatṄf is greatly affected by flow as well as temperature
(and possibly pressure, here ignored).

We adopt the suggestion that[6,9]:

Ṅf + Nf

λN
= g (4)

whereλN is a (large) temperature-dependent time constant
andg usually depends on the flow variables, as well as the
temperature. At a constant temperature and constantg (=g0)
one can solve(4) to find (Nf = 0 att = 0):

Nf = λNg0

[
1 − exp

(−t

λN

)]
(5)

If the flow halts, sogvanishes att1, say (andgwas constant
for 0<̄t < t1,equal tog0), then the solution of(4) shows that,
for t > t1:

Nf = g0λN

(
1 − exp

(−t1

λN

))
exp

t1 − t

λN
. (6)

Hence, a slow collapse ofNf occurs fort > t1, as observed.
For the case wheret < t1, we have:

Ṅf = g0 exp

(−t

λN

)
(7)

For smallt/λN, Ṅf is nearly equal tog.
The main task is to derive a form forg, in terms of flow

variables, that is compatible with experiments. In general
this is difficult, but by assuming isothermal flow and that
G= GT = constant[15] we find:

α = 1 − exp−
[
CmG

m
T

∫ t

0
Ṅ(s)(t − s)m ds

]
(8)

To include nuclei existing att = 0 (N0) we assume
N0 = N0H(t), whereH(t) is a unit step function, and hence,
(8) becomes:

α = 1 − exp−
[
K0t

m + Kf

∫ t

0
Ṅf (t − s)m ds

]
(9)

whereKf = CmG
m
T andK0 = N0Kf .

We can compare(9) with the Nakamura et al.[3] formu-
lation, which was devised for quiescent variable temperature
conditions; this formula is:

α = 1 − exp

[∫ t

0
KN dt′

]n
(10)

whereKN is a function of temperature and the flow conditions.
When KN is constant the familiarKn

Nt
n form emerges. In

differential form(10) is:

Dα

Dt
= n(1 − α)[− ln(1 − α)](n−1)/nKN (11)

This form, as emphasized by various writers (e.g. Eder and
Janeschitz-Kriegl[6]), lacks the detailed physics and the flex-
ibility of (2), even though(11)gives a convenient way to find
KN oncen is known. In the quiescent casen= m.

It is sometimes useful to use the Schneider et al.[17]
forms resulting from repeated differentiation of the square-
bracketed term in Eq.(8). We have in the isothermal case,
whereG= GT = constant:

αf = CmG
m
T

∫ t

0
Ṅt(s)(t − s)m ds (12)
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