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Abstract

Constitutive models that conform to separable KBKZ specification have been shown to fit steady-state strain hardening rheological data
in planar and uniaxial elongational flows, but with inaccuracy in the rate of strain hardening. The single parameter molecular stress function
model of Wagner [Rheol. Acta 39 (2000) 97–109] has been shown to accurately fit the rise-rate in experimental data for a number of strain
hardening and strain-softening materials. We study this models accuracy against the well characterised IUPAC LDPE data, and present a
method for full implementation of this model for flow solution which is suitable for incorporating into existing separable KBKZ software. A
new method for particle tracking in arbitrarily aligned meshes, which is efficient and robust, is given.

The quadratic molecular stress function (QMSF) model is compared to existing separable KBKZ based models, including one which is
capable of giving planar strain hardening; the QMSF is shown to fit experimental rheological and contraction flow data more convincingly.
The issue of ‘negative correction pressures’ notable in some Doi–Edwards based models is addressed. The cause is identified, and leads to a
logical method of calculation which does not give these anomalous results.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Molecular stress function (MSF); Simulation; Strain hardening; KBKZ; Negative correction pressure

1. Introduction

Forms of the separable KBKZ model[1] have had suc-
cess (though generally within some limit) in modelling a
large number of experimental rheological data. Papanasta-
siou et al.’s damping function[2] has been very successful
in fitting data for steady-stateuniaxial elongational viscos-
ity, shear viscosity, and first normal stress difference for both
strain hardening and strain-softening materials. This has led
to considerable success in simulating axisymmetric flows of
strain hardening polymer melt[3–9]. The model has also been
successful in simulating planar flows of strain-softening melt
[6,10–12], but has not been so successful in modelling strain-
hardening planar flows as it does not give simultaneous pla-
nar strain-hardening and shear softening behaviour[9]. An
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adaptation of the KBKZ[13] permitted steady-state values
for planar elongation viscosity, uniaxial elongational viscos-
ity, and shear viscosity to be fitted simultaneously; the rate
of strain hardening was, however, below that seen in exper-
imental results[13]. The model has been applied to several
flows, including planar flows of strain hardening polymer
melt, with improved success due to capturing significant fea-
tures of strain hardening behaviour[13–15].

Significant improvement, particularly in capturing the rate
of strain hardening, is suggested by use of the molecular
stress function (MSF) model[16–20]. The MSF model is
based upon considerations of the geometry and stored energy
of the polymer segments undergoing deformation; a particu-
lar version, the quadratic molecular stress function (QMSF)
model[19] has been shown to fit transient planar elongation,
uniaxial elongation, biaxial elongation and first and second
normal stress difference measurements for strain hardening
flows. The accuracy of fit is remarkable particularly as only a
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single adjustable parameter is used in the model. convective
constraint release (CCR)[21] is incorporated into the model
described in reference[20], in a manner that effectively sep-
arates elongational and rotational damping functions. The
versions preceding the CCR model can be recognized as fol-
lowing the ‘separabilty’ assumption[20].

There have been many recent developments in simulation
of time-integral viscoelastic flows. Two-dimensional time
dependent flows have been solved by convecting deforma-
tion fields, to achieve a purely Eulerian method[22]; three-
dimensional time dependant flows have be modelled using a
Lagrangian mesh approach with remeshing, and information
transfer, when the mesh becomes distorted[23]. A modified
version of the QMSF with CCR has been implemented and
applied to membrane inflation[24]. Direct comparison has
been made between a time-integral model, its differential ap-
proximation and an inelastic model in a complex flow[25].

There have been other recent developments in rheologi-
cal modelling, with a strong emphasis on molecularly based
models. Notable amongst these developments are the Pom
Pom model[26,27], and developments in differential mod-
els[28,29]. Molecular considerations have led to some mod-
els that employ fractional powers of the Finger strain tensor
[30,31].

The single parameter QMSF model without constraint re-
lease, described in reference[19] has been shown to have
many strong points. The model also has an elegant physical
derivation in its favour, and provides a natural bridge be-
tween earlier KBKZ models, and the MSF with CCR model,
described in reference[20]. It is this single parameter QMSF
model that this work focuses on.

2. The molecular stress function model

The molecular stress function (MSF) model is based on
the extra-stress,τ(t) being given by:

τ(t) =
∫ t

−∞
m(t − t′)SMSF(t′) dt′, (1)

whereSMSF is the strain measure, andm(t− t′) the memory
function between timet′ in the past, and the current timet.
The strain measure of the molecular stress function is given
by:

SMSF = 5f 2
〈
u′u′

u′2

〉
, (2)

whereu′ is a deformed vector given by

u′ = F(t, t′)−1u0, (3)

whereF is the deformation gradient tensor between timet′
in the past, and the current timet, andu0 a vector of (ini-
tially) unit length. The brackets〈 〉, denote the average over

Fig. 1. Schematic illustration of tube deformations:u0 is the original un-
deformed vector,u′ the deformed vector given byu′ =F−1u0, andu′/u′ the
normalised deformed vector.

the surface of a sphere of unit radius, i.e.:

〈h〉 = 1

4π

∫
Ω

hdΩ. (4)

The strain measure,SMSF is related to the Doi–Edwards strain
function,SDE, the relationship is:

SMSF = f 2SDE. (5)

Fig. 1 suggests the deformations of tube segments, accord-
ing to the Doi–Edwards model, in an extensional flow. The
division byu′2 in Eq.(2), inherent to the Doi–Edwards strain
tensor, normalises the length of the deformed segments, but
effectively draws the ‘strain ellipse’ back to being a ‘strain
sphere’ (seeFig. 1). Thus the Doi–Edwards model assumes
a constant cross-section under elongation; the orientation of
the segments is accounted for, but the stretching of the tube
is not accounted for[19]. This indicates the need for ‘f 2’ in
Eq.(2).

The valuef represents the ratio of initial to final tube diam-
etersa0/a. The ratiof has been defined as a function of〈u′〉,
or 〈lnu′〉. A pair of parameter-free models is derived from
first principles: the linear molecular stress function (LMSF)
is for modelling linear molecules; the parameter-free model
is derived as:

f 2 = e〈ln u′〉, (6)

in reference[18], and the quadratic strain function (QMSF)
for modelling long chain branched molecules; is derived in
reference[19] in parameter-free form:

f 2 = 1
2 e2〈ln u′〉 + 1

2. (7)

We concentrate on a recent single-parameter model forf
[19] which includes the notion of a maximum tube stretch.
This includes the idea of tube-slip at high deformations,
which gives rise to a maximum tube stretch; the tube-slip
coefficient is defined in terms of stored energyE, and a max-
imum value of stored energy,Emax. The stored energy is pro-
portional tof2 − 1. These principles are used to derive single
parameter models for the LMSF and QMSF:

For the LMSF:

f 2 = 1 + (f 2
max − 1)

[
1 + exp

(
−e〈ln u′〉 − 1

f 2
max − 1

)]
, (8)
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